Ferroelectricity

Source: Wikipedia, the free encyclopedia.

Ferroelectricity is a characteristic of certain materials that have a

Rochelle salt by Joseph Valasek.[3] Thus, the prefix ferro, meaning iron, was used to describe the property despite the fact that most ferroelectric materials do not contain iron. Materials that are both ferroelectric and ferromagnetic are known as multiferroics
.

Polarization

Linear dielectric polarization
Paraelectric polarization
Ferroelectric polarization

When most materials are

paraelectric materials,[4] show a more enhanced nonlinear polarization (see figure). The electric permittivity
, corresponding to the slope of the polarization curve, is not constant as in linear dielectrics but is a function of the external electric field.

In addition to being nonlinear, ferroelectric materials demonstrate a spontaneous nonzero polarization (after

ferromagnetic materials, which have spontaneous magnetization
and exhibit similar hysteresis loops.

Typically, materials demonstrate ferroelectricity only below a certain phase transition temperature, called the Curie temperature (TC) and are paraelectric above this temperature: the spontaneous polarization vanishes, and the ferroelectric crystal transforms into the paraelectric state. Many ferroelectrics lose their pyroelectric properties above TC completely, because their paraelectric phase has a centrosymmetric crystal structure.[5]

Applications

The nonlinear nature of ferroelectric materials can be used to make capacitors with adjustable capacitance. Typically, a ferroelectric capacitor simply consists of a pair of electrodes sandwiching a layer of ferroelectric material. The permittivity of ferroelectrics is not only adjustable but commonly also very high, especially when close to the phase transition temperature. Because of this, ferroelectric capacitors are small in physical size compared to dielectric (non-tunable) capacitors of similar capacitance.

The spontaneous polarization of ferroelectric materials implies a

RFID cards. In these applications thin films of ferroelectric materials are typically used, as this allows the field required to switch the polarization to be achieved with a moderate voltage. However, when using thin films a great deal of attention needs to be paid to the interfaces, electrodes and sample quality for devices to work reliably.[7]

Ferroelectric materials are required by symmetry considerations to be also piezoelectric and pyroelectric. The combined properties of memory, piezoelectricity, and pyroelectricity make ferroelectric capacitors very useful, e.g. for sensor applications. Ferroelectric capacitors are used in medical ultrasound machines (the capacitors generate and then listen for the ultrasound ping used to image the internal organs of a body), high quality infrared cameras (the infrared image is projected onto a two dimensional array of ferroelectric capacitors capable of detecting temperature differences as small as millionths of a degree Celsius), fire sensors, sonar, vibration sensors, and even fuel injectors on diesel engines.

Another idea of recent interest is the ferroelectric tunnel junction (FTJ) in which a contact is made up by nanometer-thick ferroelectric film placed between metal electrodes.[8] The thickness of the ferroelectric layer is small enough to allow tunneling of electrons. The piezoelectric and interface effects as well as the depolarization field may lead to a giant electroresistance (GER) switching effect.

Yet another burgeoning application is multiferroics, where researchers are looking for ways to couple magnetic and ferroelectric ordering within a material or heterostructure; there are several recent reviews on this topic.[9]

electron-hole pairs, leading to enhanced photocatalysis.[18] Also, due to pyroelectric and piezoelectric effects under varying temperature (heating/cooling cycles)[19][20] or varying strain (vibrations) conditions[21] extra charges can appear on the surface and drive various (electro)chemical reactions
forward.

Photoferroelectric imaging is a technique to record optical information on pieces of ferroelectric material. The images are nonvolatile and selectively erasable.[22]

Materials

The internal electric dipoles of a ferroelectric material are coupled to the material lattice so anything that changes the lattice will change the strength of the dipoles (in other words, a change in the spontaneous polarization). The change in the spontaneous polarization results in a change in the surface charge. This can cause current flow in the case of a ferroelectric capacitor even without the presence of an external voltage across the capacitor. Two stimuli that will change the lattice dimensions of a material are force and temperature. The generation of a surface charge in response to the application of an external stress to a material is called piezoelectricity. A change in the spontaneous polarization of a material in response to a change in temperature is called pyroelectricity.

Generally, there are 230 space groups among which 32 crystalline classes can be found in crystals. There are 21 non-centrosymmetric classes, within which 20 are piezoelectric. Among the piezoelectric classes, 10 have a spontaneous electric polarization which varies with temperature; thus they are pyroelectric. Ferroelectricity is a subset of pyroelectricity, which brings spontaneous electronic polarization to the material.[23]

32 Crystalline classes
21 noncentrosymmetric 11 centrosymmetric
20 classes piezoelectric non piezoelectric
10 classes pyroelectric non pyroelectric
ferroelectric non ferroelectric
e.g. : PbZr/TiO3, BaTiO3, PbTiO3, AlN[24] e.g. : Tourmaline, ZnO, e.g. : Quartz, Langasite

Ferroelectric phase transitions are often characterized as either displacive (such as BaTiO3) or order-disorder (such as NaNO2), though often phase transitions will demonstrate elements of both behaviors. In

forces. This leads to an asymmetrical shift in the equilibrium ion positions and hence to a permanent dipole moment. The ionic displacement in barium titanate concerns the relative position of the titanium ion within the oxygen octahedral cage. In lead titanate
, another key ferroelectric material, although the structure is rather similar to barium titanate the driving force for ferroelectricity is more complex with interactions between the lead and oxygen ions also playing an important role. In an order-disorder ferroelectric, there is a dipole moment in each unit cell, but at high temperatures they are pointing in random directions. Upon lowering the temperature and going through the phase transition, the dipoles order, all pointing in the same direction within a domain.

An important ferroelectric material for applications is

anti-ferroelectric
lead zirconate. Different compositions are used for different applications; for memory applications, PZT closer in composition to lead titanate is preferred, whereas piezoelectric applications make use of the diverging piezoelectric coefficients associated with the morphotropic phase boundary that is found close to the 50/50 composition.

Ferroelectric

crystals often show several transition temperatures and domain structure hysteresis, much as do ferromagnetic crystals. The nature of the phase transition
in some ferroelectric crystals is still not well understood.

In 1974 R.B. Meyer used symmetry arguments to predict ferroelectric

LCoS
.

In 2010 David Field found that prosaic films of chemicals such as nitrous oxide or propane exhibited ferroelectric properties.[26] This new class of ferroelectric materials exhibit "spontelectric" properties, and may have wide-ranging applications in device and nano-technology and also influence the electrical nature of dust in the interstellar medium.

Other ferroelectric materials used include triglycine sulfate, polyvinylidene fluoride (PVDF) and lithium tantalate.[27] A single atom thick ferroelectric monolayer can be created using pure bismuth. [28]

It should be possible to produce materials which combine both ferroelectric and metallic properties simultaneously, at room temperature.[29] According to research published in 2018 in Nature Communications,[30] scientists were able to produce a two-dimensional sheet of material which was both ferroelectric (had a polar crystal structure) and which conducted electricity.

Theory

An introduction to Landau theory can be found here.[31] Based on Ginzburg–Landau theory, the free energy of a ferroelectric material, in the absence of an electric field and applied stress may be written as a Taylor expansion in terms of the order parameter, P. If a sixth order expansion is used (i.e. 8th order and higher terms truncated), the free energy is given by:

where Px, Py, and Pz are the components of the polarization vector in the x, y, and z directions respectively, and the coefficients, must be consistent with the crystal symmetry. To investigate domain formation and other phenomena in ferroelectrics, these equations are often used in the context of a

phase field model. Typically, this involves adding a gradient term, an electrostatic term and an elastic term to the free energy. The equations are then discretized onto a grid using the finite difference method or finite element method and solved subject to the constraints of Gauss's law and Linear elasticity
.

In all known ferroelectrics, and . These coefficients may be obtained experimentally or from ab-initio simulations. For ferroelectrics with a first order phase transition, , whereas for a second order phase transition.

The spontaneous polarization, Ps of a ferroelectric for a cubic to tetragonal phase transition may be obtained by considering the 1D expression of the free energy which is:

This free energy has the shape of a double well potential with two free energy minima at , the spontaneous polarization. We find the derivative of the free energy, and set it equal to zero in order to solve for :

Since the Ps = 0 solution of this equation rather corresponds to a free energy maxima in the ferroelectric phase, the desired solutions for Ps correspond to setting the remaining factor to zero:

whose solution is:

and eliminating solutions which take the square root of a negative number (for either the first or second order phase transitions) gives:

If , the solution for the spontaneous polarization reduces to:

The hysteresis loop (Px versus Ex) may be obtained from the free energy expansion by including the term -Ex Px corresponding to the energy due to an external electric field Ex interacting with the polarization Px, as follows:

We find the stable polarization values of Px under the influence of the external field, now denoted as Pe, again by setting the derivative of the energy with respect to Px to zero:

Plotting Ex (on the X axis) as a function of Pe (but on the Y axis) gives an S-shaped curve which is multi-valued in Pe for some values of Ex. The central part of the 'S' corresponds to a free energy

local maximum
(since ). Elimination of this region, and connection of the top and bottom portions of the 'S' curve by vertical lines at the discontinuities gives the hysteresis loop of internal polarization due to an external electric field.

Sliding ferroelectricity

Sliding ferroelectricity is widely found but only in two-dimensional (2D) van der Waals stacked layers. The vertical electric polarization is switched by in-plane interlayer sliding.[32]

See also

References

  1. .
  2. .
  3. .
  4. John Wiley & Sons
    1997, New York
  5. .
  6. .
  7. .
  8. .
  9. .
  10. .
  11. .
  12. .
  13. .
  14. ^ .
  15. .
  16. .
  17. .
  18. .
  19. .
  20. .
  21. .
  22. ^ Land, Cecil (2004). "Photoferroelectric imaging". McGraw-Hill Concise Encyclopedia of Science and Technology (5 ed.). New York: McGraw-Hill.
  23. , retrieved 2022-09-22
  24. ^ Wanlin Zhu, John Hayden, Fan He, Jung-In Yang, Pannawit Tipsawat, Mohammad D. Hossain, Jon-Paul Maria, and Susan Trolier-McKinstry, "Strongly temperature dependent ferroelectric switching in AlN, Al1-xScxN, and Al1-xBxN thin films", Appl. Phys. Lett. 119, 062901 (2021) https://doi.org/10.1063/5.0057869
  25. .
  26. ^ Plekan, Oksana (2010). "Novel ferroelectric behaviour of N2O films: spontaneous potentials of up to 40 V." Poster Session Presented at ECAMP 2010, Salamanca, Spain. – via Aarhus University.
  27. ^ Aggarwal, M.D.; A.K. Batra; P. Guggilla; M.E. Edwards; B.G. Penn; J.R. Currie Jr. (March 2010). "Pyroelectric Materials for Uncooled Infrared Detectors: Processing, Properties, and Applications" (PDF). NASA. p. 3. Retrieved 26 July 2013.
  28. ^ "Discovery of ferroelectricity in an elementary substance". National University of Singapore. April 2023. Retrieved 10 April 2023.
  29. ^ "Rutgers Physicists Create New Class of 2D Artificial Materials".
  30. PMID 29670098
    .
  31. .
  32. .

Further reading

External links