Timeline of gravitational physics and relativity

Source: Wikipedia, the free encyclopedia.

The following is a

gravitational physics and general relativity
.

Before 1500

1500s

  • 1543 – Nicolaus Copernicus publishes On the Revolutions of Heavenly Spheres.[1]
  • 1583 – Galileo Galilei deduces the period relationship of a pendulum from observations (according to later biographer).
  • 1586 – Simon Stevin demonstrates that two objects of different mass accelerate at the same rate when dropped.[2]
  • 1589 – Galileo Galilei describes a
    specific gravity
    .
  • 1590 – Galileo Galilei formulates modified Aristotelean theory of motion (later retracted) based on density rather than weight of objects.

1600s

Geometric diagram for Newton's proof of Kepler's second law.

1700s

Lagrange points

1800s

1900s

The U.S. Navy's nuclear-powered Task Force 1 underway for Operation Sea Orbit in the Mediterranean, 1964.

1910s

Einstein's 1911 argument for gravitational redshift

1920s

1930s

The Einstein Cross, an example of gravitational lensing at work

1940s

1950s

1960s

1970s

1980s

Variations in the temperature of the cosmic microwave background measured by the COBE satellite.
Variations in the temperature of the cosmic microwave background measured by the COBE satellite. The plane of the Milky Way Galaxy is horizontal across the middle of each picture.

1990s

Parameter space of various approximation techniques in general relativity

2000s

2010s

Improving cosmological measurements by three different satellites

2020s

The size of Sagittarius A* is smaller than the orbit of Mercury.

See also

References

  1. ^ .
  2. .
  3. ^ .
  4. ^ .
  5. ^ "Olber's Paradox: Why Is The Sky Dark at Night?". American Museum of Natural History. Retrieved June 6, 2024.
  6. .
  7. ^ .
  8. ^ .
  9. .
  10. ^ Halley, Edmund (1705). A synopsis of the astronomy of comets. Oxford: John Senex. Retrieved 16 June 2020 – via Internet Archive.
  11. .
  12. ^ De mundi systemate, Isaac Newton, London: J. Tonson, J. Osborn, & T. Longman, 1728.
  13. .
  14. ^ Maclaurin, Colin. A Treatise of Fluxions: In Two Books. 1. Vol. 1. Ruddimans, 1742.
  15. .
  16. ^ . For details of Kant's position, see Stephen Palmquist, "Kant's Cosmogony Re-Evaluated", Studies in History and Philosophy of Science 18:3 (September 1987), pp.255–269.
  17. ^ Koon, W. S.; Lo, M. W.; Marsden, J. E.; Ross, S. D. (2006). Dynamical Systems, the Three-Body Problem, and Space Mission Design. p. 9. Archived from the original on 2008-05-27. Retrieved 2008-06-09. (16MB)
  18. ^ Euler, Leonhard (1765). De motu rectilineo trium corporum se mutuo attrahentium (PDF).
  19. ^ Euler L, Nov. Comm. Acad. Imp. Petropolitanae, 10, pp. 207–242, 11, pp. 152–184; Mémoires de l'Acad. de Berlin, 11, 228–249.
  20. ^ Lagrange, Joseph-Louis (1867–92). "Tome 6, Chapitre II: Essai sur le problème des trois corps". Œuvres de Lagrange (in French). Gauthier-Villars. pp. 229–334.
  21. JSTOR 106988
    .
  22. .
  23. ^ s:On the Space Theory of Matter
  24. S2CID 124333204
    .
  25. .
  26. ^ Bod, L.; Fischbach, E.; Marx, G.; Náray-Ziegler, Maria (31 Aug 1990). "One Hundred Years of the Eötvös Experiment". Archived from the original on October 22, 2012.
  27. . (Originally published in Programmabhandlung des städtischen Realgymnasiums zu Stargard i. Pomm., 1902)
  28. ^ .
  29. .
  30. .
  31. .
  32. ^ Hecht, Eugene (2011). "How Einstein Confirmed ". American Journal of Physics. 79: 591–600. .
  33. ^ Einstein, Albert (1907). "Relativitätsprinzip und die aus demselben gezogenen Folgerungen" [On the Relativity Principle and the Conclusions Drawn from It] (PDF). Jahrbuch der Radioaktivität (4): 411–462.
  34. ^ .
  35. .
  36. .
  37. .
  38. .
  39. .
  40. ^ Born, Max (1909). "Über die Dynamik des Elektrons in der Kinematik des Relativitätsprinzips". Physikalische Zeitschrift. 10: 814–17.
  41. .
  42. .
  43. .
  44. ^ Einstein, Albert (1915). "Feldgleichungen der Gravitation" [Field Equations of Gravitation]. Preussische Akademie der Wissenschaften, Sitzungsberichte: 844–847.
  45. .
  46. .
  47. ^ Hilbert, David (1915), "Die Grundlagen der Physik" [Foundations of Physics], Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen – Mathematisch-Physikalische Klasse (in German), 3: 395–407
  48. .
  49. ^ Schwarzschild, Karl (1916). "Über das Gravitationsfeld eines Massenpunktes nach der Einstein'schen Theorie" [On the Gravitational Field of a Point Mass According to Einstein's Theory]. Sitzungsberichte der Königlich-Preussischen Akademie der Wissenschaften.
  50. ^ Schwarzschild, Karl (1916). "Über das Gravitationsfeld einer Kugel aus inkompressibler Flüssigkeit" [On the Gravitational Field of a Sphere of Incompressible Fluid]. Sitzungsberichte der Königlich-Preussischen Akademie der Wissenschaften.
  51. . Retrieved 25 March 2022.
  52. ^ Eisenstaedt, "The Early Interpretation of the Schwarzschild Solution," in D. Howard and J. Stachel (eds), Einstein and the History of General Relativity: Einstein Studies, Vol. 1, pp. 213-234. Boston: Birkhauser, 1989.
  53. .
  54. .
  55. .
  56. ^ Einstein, Albert (1917). "Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie" [Cosmological Considerations in the General Theory of Relativity]. Preussische Akademie der Wissenschaften, Sitzungsberichte (in German). 1: 142–152.
  57. JSTOR 6491
  58. .
  59. ^ Einstein, Albert (1918). "Gravitationswellen" [Gravitational Waves]. Preussische Akademie der Wissenschaften, Sitzungsberichte (in German): 154–167.
  60. S2CID 125545290
    .
  61. . [On the Effect of Rotating Distant Masses in Einstein's Theory of Gravitation]
  62. . [Correction to my paper "On the Effect of Rotating Distant Masses in Einstein's Theory of Gravitation"]
  63. . [On the Influence of the Proper Rotation of Central Bodies on the Motions of Planets and Moons According to Einstein's Theory of Gravitation]
  64. .
  65. .
  66. ^ David Kaiser, "How Politics Shaped General Relativity", New York Times, November 6, 2015.
  67. .
  68. .
  69. .
  70. .
  71. .
  72. .
  73. .
  74. .
  75. .
  76. ^ "Big bang theory is introduced – 1927". A Science Odyssey. WGBH. Retrieved 31 July 2014.
  77. from the original on 1 October 2006. Retrieved 28 November 2019.
  78. .
  79. .
  80. .
  81. .
  82. ^ Einstein, Albert (1931). "Zum kosmologischen Problem der allgemeinen Relativitätstheorie" [On the Cosmological Problem of the General Theory of Relativity]. Sitzungsberichte der Preussischen Akademie der Wissenschaften, Physikalisch-mathematische Klasse (in German): 235–237.
  83. PMID 16587663
    .
  84. .
  85. ^ Poffenberger, Leah; Levine, Alaina G. (April 2019). Voss, David (ed.). "April 14, 1932: Cockcroft and Walton Split the Atom". This Month in History. APS News. 28 (4). American Physical Society (APS).
  86. .
  87. .
  88. .
  89. .
  90. ^ McCormick, Katie (July 18, 2023). "Ultracold Gases Can Probe Neutron Star Guts". Scientific American. Archived from the original on July 31, 2023. Retrieved July 31, 2023.
  91. ^ A. Einstein and N. Rosen, "The Particle Problem in the General Theory of Relativity," Phys. Rev. 48(73) (1935).
  92. PMID 17769014
    .
  93. (PDF) from the original on 2013-12-26.
  94. .
  95. .
  96. .
  97. .
  98. ^ .
  99. .
  100. (PDF) from the original on January 16, 2014. Retrieved January 15, 2014.
  101. .
  102. ^ Bartels, Megan (July 21, 2023). "Oppenheimer Almost Discovered Black Holes Before He Became 'Destroyer of Worlds'". Scientific American. Retrieved July 26, 2023.
  103. .
  104. .
  105. .
  106. Rev. Mod. Phys.
    21, 447, published July 1, 1949.
  107. .
  108. .
  109. ^ a b c d e Preskill, John and Kip S. Thorne. Foreword to Feynman Lectures On Gravitation. Feynman et al. (Westview Press; 1st ed. (June 20, 2002). PDF link
  110. .
  111. .
  112. .
  113. . Retrieved 27 September 2016.
  114. .
  115. .
  116. .
  117. .
  118. .
  119. . Retrieved 2012-07-20.
  120. .
  121. S2CID 120696638. Available (subscribers only) at Il Nuovo Cimento
  122. .
  123. .
  124. .
  125. .
  126. .; originally published in Acta Phys. Pol. 22, 13–23 (1962).
  127. .
  128. .
  129. .
  130. .
  131. .
  132. . So far, the clumsily long name 'quasi-stellar radio sources' is used to describe these objects. Because the nature of these objects is entirely unknown, it is hard to prepare a short, appropriate nomenclature for them so that their essential properties are obvious from their name. For convenience, the abbreviated form 'quasar' will be used throughout this paper.
  133. .
  134. .
  135. ^ "Haystack marks physics milestone". MIT News. July 14, 2005. Retrieved May 2, 2023.
  136. .
  137. .
  138. .
  139. .
  140. .
  141. ^ a b Moskowitz, Clara (March 1, 2019). "Neutron Stars: Nature's Weirdest Form of Matter". Scientific American.
  142. .
  143. .
  144. .
  145. .
  146. .
  147. .
  148. .
  149. ^ "Making Waves". TERP. 2016-08-18. Retrieved 2016-11-07.
  150. ^ Cho, Adrian (February 15, 2016). "Remembering Joseph Weber, the controversial pioneer of gravitational waves". Science.
  151. ^ David Kaiser, "Learning from Gravitational Waves", New York Times, October 3, 2017.
  152. .
  153. .
  154. .
  155. .
  156. .
  157. .
  158. .
  159. .
  160. .
  161. .
  162. .
  163. .
  164. .
  165. ^ Cho, Adrian (October 3, 2017). "Ripples in space: U.S. trio wins physics Nobel for discovery of gravitational waves," Science. Retrieved May 20, 2019.
  166. S2CID 10067969
    .
  167. .
  168. ^ Wick, Gerald (February 3, 1972). "The clock paradox resolved". New Scientist: 261–263.
  169. S2CID 122083437
    .
  170. .
  171. .
  172. ^ Overbye, Dennis (July 3, 2022). "James Bardeen, an Expert on Unraveling Einstein's Equations, Dies at 83". The New York Times. Archived from the original on July 3, 2022. Retrieved May 8, 2023.
  173. PMID 22655343
    .
  174. ^ Dahn, Ryan (March 10, 2023). "Gravitation's attraction, 50 years later". Physics Today. Retrieved July 31, 2023.
  175. .
  176. ^ Matson, John (Oct 1, 2010). "Artificial event horizon emits laboratory analogue to theoretical black hole radiation". Sci. Am.
  177. S2CID 4290107
    .
  178. .
  179. .
  180. .
  181. .
  182. .
  183. .
  184. .
  185. .
  186. CNRS
    . April 10, 2019. Retrieved May 24, 2023.
  187. .
  188. .
  189. .
  190. .
  191. .
  192. ^ Nemiroff, Robert; Bonnell, Jerry (April 5, 2023). "Rubin's Galaxy". Astronomy Picture of the Day. NASA. Retrieved April 18, 2023.
  193. .
  194. .
  195. .
  196. .
  197. ^ Friedrich, Helmut (1986). "On the existence of -geodesically complete or future complete solutions of Einstein's field equations with smooth asymptotic structure". Communications in Mathematical Physics. 107 (4): 587–609.
    S2CID 121761845
    .
  198. ^ a b c Nadis, Steve (May 11, 2020). "New Math Proves That a Special Kind of Space-Time Is Unstable". Quanta Magazine. Retrieved January 6, 2023.
  199. S2CID 4327285
    .
  200. .
  201. .
  202. .
  203. .
  204. .
  205. .
  206. .
  207. .
  208. .
  209. ^ "Hubble's Deepest View of the Universe Unveils Bewildering Galaxies across Billions of Years". NASA. 1995. Retrieved January 12, 2009.
  210. ^ "A Bull's Eye for MERLIN and the Hubble". University of Manchester. 27 March 1998.
  211. ^ Browne, Malcolm W. (1998-03-31). "'Einstein Ring' Caused by Space Warping Is Found". The New York Times. Retrieved 2010-05-01.
  212. S2CID 15640044
    .
  213. .
  214. .
  215. .
  216. .
  217. .
  218. .
  219. .
  220. ^ Everitt, C.W.F.; Parkinson, B.W. (2009). "Gravity Probe B Science Results—NASA Final Report" (PDF). Retrieved 2 May 2009.
  221. S2CID 11878715
    .
  222. .
  223. ^ "Hubble Goes to the eXtreme to Assemble Farthest-Ever View of the Universe". NASA. September 25, 2012. Retrieved September 26, 2012.
  224. ^ "NASA's NuSTAR Helps Solve Riddle of Black Hole Spin". NASA. 27 February 2013. Retrieved 3 March 2013. Public Domain This article incorporates text from this source, which is in the public domain.
  225. S2CID 217275338
    .
  226. .
  227. ^ Naeye, Robert (11 February 2016). "Gravitational Wave Detection Heralds New Era of Science". Sky and Telescope. Retrieved 11 February 2016.
  228. ^ Pretorius, Frans (May 31, 2016). "Relativity Gets Thorough Vetting from LIGO". Physics. Vol. 9, no. 52. American Physical Society. Retrieved May 12, 2023.
  229. ^ Chu, Jennifer (June 15, 2016). "For second time, LIGO detects gravitational waves". MIT News. Retrieved June 16, 2016.
  230. ^
    S2CID 217163611
    .
  231. ^ .
  232. .
  233. .
  234. .
  235. ^ McLaughlin, Maura (October 16, 2017). "Neutron Star Merger Seen and Heard". Physics. Vol. 10, no. 114. American Physical Society. Retrieved May 12, 2023.
  236. .
  237. ^ Landau E, Chou F, Washington D, Porter M (16 October 2017). "NASA missions catch first light from a gravitational-wave event". NASA. Retrieved 16 October 2017.
  238. S2CID 59565697
    .
  239. .
  240. .
  241. ^ Curtis, Sanjana (January 2023). "How Star Collisions Forge the Universe's Heaviest Elements". Scientific American: 30–7.
  242. S2CID 6211162
    .
  243. .
  244. .
  245. .
  246. S2CID 205261622.{{cite journal}}: CS1 maint: numeric names: authors list (link
    )
  247. .
  248. .
  249. .
  250. ^ Hartnett, Kevin (17 May 2018). "Mathematicians Disprove Conjecture Made to Save Black Holes". Quanta Magazine. Retrieved 29 March 2020.
  251. S2CID 53235598
    .
  252. ^ Sokol, Joshua (June 5, 2018). "Gravitational Waves Reveal the Hearts of Neutron Stars". Scientific American.
  253. S2CID 119359694
    .
  254. .
  255. ^ Lerner, Louise (September 13, 2018). "Gravitational waves provide dose of reality about extra dimensions". UChicago News. Retrieved January 3, 2023.
  256. S2CID 118486016
    .
  257. .
  258. .
  259. .
  260. .
  261. .
  262. .
  263. .
  264. ^ Kitching, Thomas (December 12, 2017). "How crashing neutron stars killed off some of our best ideas about what 'dark energy' is". The Conversation. Retrieved January 5, 2023.
  265. S2CID 256770086
    .
  266. .
  267. ^ Temming, Maria (August 29, 2018). "The strength of gravity has been measured to new precision". Science News. Retrieved August 3, 2023.
  268. S2CID 145969867
    .
  269. ^ Landau, Elizabeth (April 10, 2019). "Black Hole Image Makes History". Jet Propulsion Laboratory, California Institute of Technology. Retrieved May 17, 2023.
  270. .
  271. ^ Staff (2020). "GW190814 Factsheet: Lowest mass ratio to date: Strongest evidence of higher order modes" (PDF). LIGO. Retrieved 26 June 2020.
  272. .
  273. .
  274. ^ Conover, Emily (October 28, 2020). "Galileo's famous gravity experiment holds up, even with individual atoms". Science News. Retrieved August 6, 2023.
  275. S2CID 237940816
    .
  276. ^ McCormick, Katie (2021-10-25). "An Ultra-Precise Clock Shows How to Link the Quantum World With Gravity". Quanta Magazine. Retrieved 2021-10-29.
  277. S2CID 233715159
    .
  278. .
  279. ^ Bower, Geoffrey C. (May 2022). "Focus on First Sgr A* Results from the Event Horizon Telescope". The Astrophysical Journal. Retrieved May 12, 2022.
  280. ISSN 0362-4331
    . Retrieved May 12, 2022.
  281. .
  282. .
  283. ^ Fletcher, Seth (September 2022). "Portrait of a Black Hole". Scientific American: 48–53. Archived from the original on September 25, 2022.
  284. S2CID 245932980
    .
  285. ^ Seigel, Ethan (January 18, 2022). "Has a new experiment just proven the quantum nature of gravity?". Big Think. Retrieved August 5, 2023.
  286. ^ Conover, Emily (January 13, 2022). "Quantum particles can feel the influence of gravitational fields they never touch". Science News. Retrieved August 5, 2023.
  287. S2CID 22378148
    .
  288. .
  289. ^ Garner, Rob (July 12, 2022). "NASA's Webb Delivers Deepest Infrared Image of Universe Yet". NASA. Retrieved January 2, 2023.
  290. .
  291. ^ Plait, Phil (January 2023). "The Brightest Gamma-Ray Burst Ever Recorded Rattled Earth's Atmosphere". Scientific American: 56–7.
  292. ^ Reddy, Francis (13 October 2022). "NASA's Swift, Fermi Missions Detect Exceptional Cosmic Blast". NASA's Goddard Space Flight Center.
  293. . Retrieved 2 January 2023.
  294. .
  295. .
  296. ^ "NASA Study Helps Explain Limit-Breaking Ultra-Luminous X-Ray Sources". NuSTAR. Retrieved 2023-04-24.
  297. S2CID 251903552
    .
  298. .
  299. ^ Kimball, Derek F. Jackson (May 15, 2023). "Testing Gravity's Effect on Quantum Spins". Physics. Vol. 16, no. 80. American Physical Society (APS). Retrieved May 17, 2023.
  300. S2CID 259274684
    .
  301. .
  302. .
  303. .
  304. ^ Castelvecchi, Davide (June 29, 2023). "Monster gravitational waves spotted for first time". Nature. Retrieved June 29, 2023.
  305. S2CID 259096065
    .
  306. ^ University of Sydney (July 3, 2023). "Quasar 'clocks' show Universe was five times slower soon after the Big Bang". Science Daily. Retrieved July 12, 2023.

External links