Carnivora

Source: Wikipedia, the free encyclopedia.

Carnivorans
Temporal range: 51.88–0 
Ma
Early Eocene-Holocene[1]
CheetahBrown bearSpotted hyenaWolfBinturongRaccoonIndian grey mongooseAmerican minkFossaWalrus
Various carnivorans, with
caniforms
to the right
Scientific classification Edit this classification
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Class: Mammalia
Clade: Carnivoramorpha
Clade:
Carnivoraformes
Order: Carnivora
Bowdich, 1821[2]
Suborders
The extant distribution and density of Carnivora species.
Synonyms
list of synonyms:
  • Caniformes (Zagorodniuk, 2008)[3][4]
  • Carnaria (Haeckel, 1866)[5]
  • Carnassidentia (Wortman, 1901)[6]
  • Carnivoramorphia (Kalandadze & Rautian, 1992)[7]
  • Carnivores (Cuvier, 1817)[8]
  • Carnivori (Vieq d'Azyr, 1792)[9]
  • Carnivorida (Pearse, 1936)[10][11]
  • Carnivoriformes (Kinman, 1994)[12]
  • Carnivoripedida (Vyalov, 1966)[13]
  • Cynofeliformia (Ginsburg, 1982)
  • Cynofeloidea (Hough, 1953)[14]
  • Cynosia (Rafinesque, 1815)[15]
  • Digitigrada (Illiger, 1811)[16]
  • Digitigradae (Gray, 1821)[17]
  • Eucarnivora (Mekayev, 2002)[18]
  • Ferae (Linnaeus, 1758)[19]
  • Fissipeda (Blumenbach, 1791)[20]
  • Neocarnivora (Radinsky, 1977)[21]
  • Plantigrada (Illiger, 1811)

Carnivora

Sahara Desert
to the open seas. They have a very large array of different body plans with a wide diversity of shapes and sizes.

Carnivora are divided into two

canids
and many "dog-like" animals. The feliforms include the
Felidae, Viverridae, hyena and mongoose families, the majority of which live in the Old World; cats are the only exception, occurring in the old world and the new world via crossing into the Americas. The caniforms include the
mustelids, skunks and pinnipeds
that occur worldwide with immense diversity in their morphology, diet and behavior.

Etymology

The word carnivore is derived from Latin carō (stem carn-) 'flesh' and vorāre 'to devour', and refers to any meat-eating organism.

Phylogeny

The oldest known carnivoran line mammals (

creodonts were occupying the megafaunal faunivorous niche. However, following the extinction of mesonychians and the oxyaenid creodonts at the end of the Eocene, carnivorans quickly moved into this niche, with forms like the nimravids being the dominant large-bodied ambush predators during the Oligocene alongside the hyaenodont creodonts (which similarly produced larger, more open-country forms at the start of the Oligocene). By the time Miocene
epoch appeared, most if not all of the major lineages and families of carnivorans had diversified and become the most dominant group of large terrestrial predators in Eurasia and North America, with various lineages being successful in megafaunal faunivorous niches at different intervals during the Miocene and later epochs.

Systematics

Evolution

Life reconstruction of Tapocyon robustus, a species of miacid

The order Carnivora belongs to a group of mammals known as Laurasiatheria, which also includes other groups such as bats and ungulates.[24][25] Within this group the carnivorans are placed in the clade Ferae. Ferae includes the closest extant relative of carnivorans, the pangolins, as well as several extinct groups of mostly Paleogene carnivorous placentals such as the creodonts, the arctocyonians, and mesonychians.[26] The creodonts were originally thought of as the sister taxon to the carnivorans, perhaps even ancestral to, based on the presence of the carnassial teeth,[27] but the nature of the carnassial teeth is different between the two groups. In carnivorans the carnassials are positioned near the front of the molar row, while in the creodonts they are positioned near the back of the molar row,[28] and this suggests a separate evolutionary history and an order-level distinction.[29] In addition, recent phylogenetic analysis suggests that creodonts are more closely related to pangolins while mesonychians might be the sister group to carnivorans and their stem-relatives.[26]

The closest stem-carnivorans are the miacoids. The miacoids include the families Viverravidae and Miacidae, and together the Carnivora and Miacoidea form the stem-clade Carnivoramorpha. The miacoids were small, genet-like carnivoramorphs that occupy a variety of niches such as terrestrial and arboreal habitats. Recent studies have shown a supporting amount of evidence that Miacoidea is an evolutionary grade of carnivoramorphs that, while viverravids are monophyletic basal group, the miacids are paraphyletic in respect to Carnivora (as shown in the phylogeny below).[30][31]

Carnivoramorpha as a whole first appeared in the

monophyletic group, the crown group of the Carnivoramorpha.[33] From there carnivorans have split into two clades based on the composition of the bony structures that surround the middle ear of the skull, the cat-like feliforms and the dog-like caniforms.[34] In feliforms, the auditory bullae are double-chambered, composed of two bones joined by a septum. Caniforms have single-chambered or partially divided auditory bullae, composed of a single bone.[35] Initially, the early representatives of carnivorans were small as the creodonts (specifically, the oxyaenids) and mesonychians dominated the apex predator niches during the Eocene, but in the Oligocene, carnivorans became a dominant group of apex predators with the nimravids, and by the Miocene
most of the extant carnivoran families have diversified and become the primary terrestrial predators in the Northern Hemisphere.

Classification of the extant carnivorans

In 1758, the

Ursus (ursids, large species of mustelids, and procyonids).[19] It was not until 1821 that the English writer and traveler Thomas Edward Bowdich gave the group its modern and accepted name.[2]

Initially, the modern concept of Carnivora was divided into two suborders: the terrestrial Fissipedia and the marine

Pinnipedia.[36] Below is the classification of how the extant families were related to each other after American paleontologist George Gaylord Simpson in 1945:[36]

  • Order Carnivora Bowdich, 1821
    • Suborder Fissipedia Blumenbach, 1791
      • Superfamily Canoidea G. Fischer de Waldheim, 1817
        • Family Canidae G. Fischer de Waldheim, 1817 – dogs
        • Family
          Ursidae
          G. Fischer de Waldheim, 1817 – bears
        • Family Procyonidae Bonaparte, 1850 – raccoons and pandas
        • Family Mustelidae G. Fischer de Waldheim, 1817 – skunks, badgers, otters, and weasels
      • Superfamily Feloidea G. Fischer de Waldheim, 1817
        • Family Viverridae J. E. Gray, 1821 – civets and mongooses
        • Family
          Hyaenidae
          J. E. Gray, 1821 – hyenas
        • Family Felidae G. Fischer de Waldheim, 1817 – cats
    • Suborder
      Pinnipedia
      Iliger, 1811
      • Family
        Otariidae
        J. E. Gray, 1825 – eared seals
      • Family Odobenidae J. A. Allen, 1880 – walrus
      • Family
        Phocidae
        J. E. Gray, 1821 – earless seals

Since then, however, the methods in which mammalogists use to assess the phylogenetic relationships among the carnivoran families has been improved with using more complicated and intensive incorporation of genetics, morphology and the fossil record. Research into Carnivora phylogeny since 1945 has found Fisspedia to be paraphyletic in respect to Pinnipedia,

polyphyletic
:

  • Mongooses and a handful of Malagasy endemic species are found to be in a clade with hyenas, with the Malagasy species being in their own family Eupleridae.[44][45][46]
  • The African palm civet is a basal cat-like carnivoran.[47]
  • The linsang is more closely related to cats.[48]
  • Pandas are not procyonids nor are they a natural grouping.[49] The giant panda is a true bear[50][51] while the red panda is a distinct family.[52]
  • Skunks and stink badgers are placed in their own family, and are the sister group to a clade containing Ailuridae, Procyonidae and Mustelidae sensu stricto.[53][52]

Below is a table chart of the extant carnivoran families and number of extant species recognized by various authors of the first (2009[54]) and fourth (2014[55]) volumes of the Handbook of the Mammals of the World:

Carnivora Bowdich, 1821
Feliformia Kretzoi, 1945
Nandinioidea Pocock, 1929
Family English Name Distribution Number of Extant Species Type Taxon Image Figure
Nandiniidae Pocock, 1929 African Palm Civet Sub-Saharan Africa 1 Nandinia binotata (J. E. Gray, 1830)
Feloidea
G. Fischer de Waldheim, 1817
Family English Name Distribution Number of Extant Species Type Taxon Image Figure
Felidae G. Fischer de Waldheim, 1817 Cats Americas, Africa, and Eurasia (introduced to Madagascar, Australasia and several islands) 37 Felis catus Linnaeus, 1758
Prionodontidae
Horsfield, 1822
Linsangs Indomalayan realm 2
Prionodon linsang
(Hardwicke, 1821)
Viverroidea J. E. Gray, 1821
Family English Name Distribution Number of Extant Species Type Taxon Image Figure
Viverridae J. E. Gray, 1821 Civets, genets, and oyans Southern Europe, Indomalayan realm, and Africa (introduced to Madagascar) 34 Viverra zibetha Linnaeus, 1758
Herpestoidea Bonaparte, 1845
Family English Name Distribution Number of Extant Species Type Taxon Image Figure
Hyaenidae
J. E. Gray, 1821
Hyenas Africa, the Middle East, the Caucasus, Central Asia, and the Indian subcontinent 4
Hyaena hyaena
(Linnaeus, 1758)
Herpestidae
Bonaparte, 1845
Mongooses Iberian Peninsula, Africa, the Middle East, the Caucasus, Central Asia, and the Indomalayan realm 34 Herpestes ichneumon (Linnaeus, 1758)
Eupleridae Chenu, 1850 Malagasy mongooses and civets Madagascar 8 Eupleres goudotii Doyère, 1835
Caniformia Kretzoi, 1945
Canoidea
G. Fischer de Waldheim, 1817
Family English Name Distribution Number of Extant Species Type Taxon Image Figure
Canidae G. Fischer de Waldheim, 1817 Dogs Americas, Africa, and Eurasia (introduced to Madagascar, Australasia and several islands) 35 Canis familiaris Linnaeus, 1758
Ursoidea G. Fischer de Waldheim, 1817
Family English Name Distribution Number of Extant Species Type Taxon Image Figure
Ursidae
G. Fischer de Waldheim, 1817
Bears Americas and Eurasia 8
Ursus arctos
Linnaeus, 1758
Phocoidea J. E. Gray, 1821
Family English Name Distribution Number of Extant Species Type Taxon Image Figure
Odobenidae J. A. Allen, 1880 Walrus The North Pole in the Arctic Ocean and subarctic seas of the Northern Hemisphere 1 Odobenus rosmarus (Linnaeus, 1758)
Otariidae
J. E. Gray, 1825
Eared Seals Subpolar, temperate, and equatorial waters throughout the
Atlantic
Oceans
15 Otaria flavescens (Linnaeus, 1758)
Phocidae
J. E. Gray, 1821
Earless Seals The sea and Lake Baikal 18
Phoca vitulina
Linnaeus, 1758
Musteloidea G. Fischer de Waldheim, 1817
Family English Name Distribution Number of Extant Species Type Taxon Image Figure
Mephitidae Bonaparte, 1845 Skunks and stink badgers Americas, western Philippines, and Indonesia and Malaysia 12
Mephitis mephitis
(Schreber, 1776)
Ailuridae J. E. Gray, 1843 Red Panda Eastern Himalayas and southwestern China 1 Ailurus fulgens F. Cuvier, 1825
Procyonidae J. E. Gray, 1825 Raccoons Americas (introduced to Europe, the Caucasus, and Japan) 12 Procyon lotor (Linnaeus, 1758)
Mustelidae G. Fischer de Waldheim, 1817 Weasels, otters, and badgers Americas, Africa, and Eurasia (introduced to Australasia and several islands) 57 Mustela erminea Linnaeus, 1758

Anatomy

Skull

feliforms
.

The canine teeth are usually large, conical, thick and stress resistant. All of the terrestrial species of carnivorans have three

olfactory receptors.[57]

Postcranial region

A black-backed jackal (Lupulella mesomelas) trying to predate on a brown fur seal (Arctocephalus pusillus) pup. These two species illustrate the diversity in bodyplan seen among carnivorans, especially between pinnipeds and their terrestrial relatives.

Aside from an accumulation of characteristics in the dental and cranial features, not much of their overall anatomy unites carnivorans as a group.

quadrupedal and most have five digits on the front feet and four digits on the back feet. In terrestrial carnivorans, the feet have soft pads. The feet can either be digitigrade as seen in cats, hyenas and dogs or plantigrade as seen in bears, skunks, raccoons, weasels, civets and mongooses. In pinnipeds, the limbs have been modified into flippers.

A tiger sleeping in a zoo
Members of the Carnivora order, like this tiger
, have pads on their feet.

Unlike

sirenians, which have fully functional tails to help them swim, pinnipeds use their limbs underwater to swim. Earless seals use their back flippers; sea lions and fur seals use their front flippers, and the walrus
use all of their limbs. As a result, pinnipeds have significantly shorter tails than other carnivorans.

Aside from the pinnipeds, dogs, bears, hyenas, and cats all have distinct and recognizable appearances. Dogs are usually

Herpestidae, Eupleridae, Mephitidae and Mustelidae have through convergent evolution maintained the small, ancestral appearance of the miacoids, though there is some variation seen such as the robust and stout physicality of badgers and the wolverine (Gulo gulo).[56]

Most carnivoran species have a well-defined

breeding season.[58] Male carnivorans usually have bacula, which are absent in hyenas and binturongs.[59]

The length and density of the fur vary depending on the environment that the species inhabits. In warm climate species, the fur is often short in length and lighter. In cold climate species, the fur is either dense or long, often with an oily substance that helps to retain heat. The pelage coloration differs between species, often including black, white, orange, yellow, red, and many shades of grey and brown. Some are striped, spotted, blotched, banded, or otherwise boldly patterned. There seems to be a correlation between habitat and color pattern; for example spotted or banded species tend to be found in heavily forested environments.[56] Some species like the grey wolf are polymorphic with different individual having different coat colors. The arctic fox (Vulpes lagopus) and the stoat (Mustela erminea) have fur that changes from white and dense in the winter to brown and sparse in the summer. In pinnipeds and polar bears, a thick insulating layer of blubber helps maintain their body temperature.

Sexual dimorphism

elephant seals
is the most pronounced among Carnivorans.
felids
Pinnipeds
offer an illustration for this.

Relationship with humans

Carnivorans are arguably the group of mammals of most interest to humans. The

Falkland Island wolf (Dusicyon australis) in 1876; the sea mink (Neogale macrodon) in 1894; the Japanese sea lion (Zalophus japonicus) in 1951 and the Caribbean monk seal (Neomonachus tropicalis) in 1952.[22] Some species such as the red fox (Vulpes vulpes) and stoat (Mustela erminea) have been introduced to Australasia and have caused many native species to become endangered or even extinct.[63]

See also

References

  1. PMID 37104581
    .
  2. ^ a b Bowditch, T. E. 1821. An analysis of the natural classifications of Mammalia for the use of students and travelers J. Smith Paris. 115. (refer pages 24, 33)
  3. ^ Zagorodniuk, I. (2008) "Scientific names of mammal orders: from descriptive to uniform" Visnyk of Lviv University, Biology series, Is. 48. P. 33-43
  4. ^ Zagorodniuk, I. (2014) "Changes In Taxonomic Diversity Of Ukrainian Mammals For The Last Three Centuries: Extinct, Phantom And Alien Species" Proceedings of the Theriological School, Vol. 12: 3–16
  5. ^ Haeckel, Ernst (1866.) "Generelle Morphologie der Organismen." Berlin: Georg Reimer.
  6. ^ J. L. Wortman (1901.) "Studies of Eocene Mammalia in the Marsh Collection, Peabody Museum." The American Journal of Science, series 4 12:193-206
  7. ^ Kalandadze, N. N. and S. A. Rautian (1992.) "Systema mlekopitayushchikh i istorygeskaya zoogeographei [The system of mammals and historical zoogeography]." Sbornik Trudov Zoologicheskogo Muzeya Moskovskogo Goschdarstvennoro Universiteta 29:44–152.
  8. ^ Georges Cuvier, Pierre André Latreille (1817.) "Le Règne Animal Distribué d'après son Organisation, pour Servir de Base à l'Histoire Naturelle des Animaux et d'Introduction à l'Anatomie Comparée" Déterville libraire, Imprimerie de A. Belin, Paris, 4 Volumes
  9. ^ Félix Vicq-Dazyr (1792.) "Encyclopédie Méthodique, Vol. 2: Système Anatomique, Quadrupèdes" Panckoucke
  10. ^ Arthur Sperry Pearse, (1936) "Zoological names. A list of phyla, classes, and orders, prepared for section F, American Association for the Advancement of Science" American Association for the Advancement of Science
  11. ^ G. G. Simpson (1952) "For and Against Uniform Endings in Zoological Nomenclature" in "Systematic Zoology Vol. 1, No. 1 (Spring, 1952)", pp. 20-23, Published By: Taylor & Francis, Ltd.
  12. ^ Kenneth E. Kinman (1994.) "The Kinman System: Toward a Stable Cladisto-Eclectic Classification of Organisms: Living and Extinct, 48 Phyla, 269 Classes, 1,719 Orders", Hays, Kan. (P. O. Box 1377, Hays 67601), 88 pages
  13. ^ O. S. Vyalov (1966.) "Sledy Zhiznedeyatel'nosti Organizmov i ikh Paleontologicheskoye Znacheniye [Traces of Vital Activity of Organisms and their Paleontological Significance]" Naukova Dumka, Kyiv, 1-219
  14. ^ Hough, J. R. (1953.) "Auditory region in North American fossil Felidae: Its significance in phylogeny." United States Geological SurveyProfessional Papers, 243-G,95–115.
  15. ^ Rafinesque, Constantine Samuel (1815). "Analyse de la Nature ou tableau de l'univers et des corps organisés". 1815. Palermo, Aux dépens de l'auteur, 223 pp. {{cite journal}}: Cite journal requires |journal= (help)
  16. ^ Johann Karl Wilhelm Illiger (1811.) "Prodromus Systematis Mammalium et Avium." Berlin: Sumptibus C. Salfeld, xviii, 301 pages
  17. ^ Gray, J. E. (1821). "On the natural arrangement of vertebrose animals". London Medical Repository. 15 (1): 296–310.
  18. ^ Mekayev, Y. A. (2002.) "The faunagenesis and classification of mammals." Petrov’s Academy of Sciences and Arts, St. Petersburg, 1–895.
  19. ^ a b Linnaeus, C. (1758). Sistema naturae per regna tria Naturae, secundum classes, ordines, genera, species, cum characteribus differentiis, synonimis locis. Tomus I. Impensis direct. Laurentii Salvii, Holmia. pp. 20–32.
  20. ^ Johann Friedrich Blumenbach (1791.) "Handbuch der Naturgeschichte. Vierte auflage." Göttingen, Johann Christian Dieterich, xii+704+[33] pp., 3 pls.
  21. ^ Leonard Radinsky (1977.) "Brains of early carnivores." Paleobiology, Volume 3, Issue 4, pp. 333 - 349
  22. ^ .
  23. ^
    doi:10.1111/j.1475-4983.2006.00586.x.{{cite journal}}: CS1 maint: multiple names: authors list (link
    )
  24. .
  25. .
  26. ^ (PDF) from the original on 9 October 2022.
  27. ^ McKenna, M. C. (1975). "Toward a phylogenetic classification of the Mammalia". In Luckett, W. P.; Szalay, F. S. (eds.). Phylogeny of the Primates. New York: Plenum. pp. 21–46.
  28. .
  29. .
  30. ^ Bryant, H.N., and M. Wolson (2004) “Phylogenetic Nomenclature of Carnivoran Mammals.” First International Phylogenetic Nomenclature Meeting. Paris, Museum National d’Histoire Naturelle
  31. .
  32. .
  33. .
  34. .
  35. .
  36. ^ .
  37. .
  38. .
  39. ^ Hunt, R. M. Jr.; Barnes, L. G. (1994). "Basicranial evidence for ursid affinity of the oldest pinnipeds" (PDF). Proceedings of the San Diego Society of Natural History. 29: 57–67.
  40. PMID 17996107
    .
  41. .
  42. .
  43. .
  44. ^ Anne D. Yoder and John J. Flynn 2003: Origin of Malagasy Carnivora
  45. ^ Yoder, A., M. Burns, S. Zehr, T. Delefosse, G. Veron, S. Goodman, J. Flynn. 2003: Single origin of Malagasy Carnivora from an African ancestor – Letters to Nature
  46. ^ Philippe Gaubert, W. Chris Wozencraft, Pedro Cordeiro-Estrela and Géraldine Veron. 2005 – Mosaics of Convergences and Noise in Morphological Phylogenies: What's in a Viverrid-Like Carnivoran?
  47. PMID 20138220
    .
  48. .
  49. .
  50. .
  51. .
  52. ^ .
  53. .
  54. .
  55. .
  56. ^ .
  57. ^ .
  58. .
  59. .
  60. .
  61. .
  62. S2CID 83737300.{{cite journal}}: CS1 maint: multiple names: authors list (link
    )
  63. ^ "100 of the World's Worst Invasive Species". Invasive Species Specialist Group.

External links