Organotin chemistry

Source: Wikipedia, the free encyclopedia.
Organotin compounds are those with tin linked to hydrocarbons. The compound on the picture is trimethyltin chloride, an example of organotin compounds.

Organotin chemistry is the scientific study of the synthesis and properties of organotin compounds or stannanes, which are

organometallic compounds containing tincarbon bonds. The first organotin compound was diethyltin diiodide ((CH3CH2)2SnI2), discovered by Edward Frankland in 1849.[1] The area grew rapidly in the 1900s, especially after the discovery of the Grignard reagents, which are useful for producing Sn–C bonds. The area remains rich with many applications in industry and continuing activity in the research laboratory.[2]

Structure

Organotin compounds are generally classified according to their oxidation states. Tin(IV) compounds are much more common and more useful.

Organic derivatives of tin(IV)

The tetraorgano derivatives are invariably tetrahedral. Compounds of the type SnRR'R''R''' have been resolved into individual enantiomers.[3]

Organotin halides

Organotin chlorides have the formula R4−nSnCln for values of n up to 3. Bromides, iodides, and fluorides are also known, but are less important. These compounds are known for many R groups. They are always tetrahedral. The tri- and dihalides form adducts with good Lewis bases such as pyridine. The fluorides tend to associate such that dimethyltin difluoride forms sheet-like polymers. Di- and especially tri-organotin halides, e.g. tributyltin chloride, exhibit toxicities approaching that of hydrogen cyanide.[4]

Organotin hydrides

Organotin hydrides have the formula R4−nSnHn for values of n up to 3. The parent member of this series, stannane (SnH4), is an unstable colourless gas. Stability is correlated with the number of organic substituents. Tributyltin hydride is used as a source of hydride radical in some organic reactions.

Organotin oxides and hydroxides

Organotin oxides and hydroxides are common products from the hydrolysis of organotin halides. Unlike the corresponding derivatives of silicon and germanium, tin oxides and hydroxides often adopt structures with penta- and even hexacoordinated tin centres, especially for the diorgano- and monoorgano derivatives. The group SnIV−O−SnIV is called a

C6H11
)3SnOH. Such triorganotin hydroxides exist in equilibrium with the distannoxanes:

2 R3SnOH ⇌ R3SnOSnR3 + H2O

With only two organic substituents on each Sn centre, the diorganotin oxides and hydroxides are structurally more complex than the triorgano derivatives.

dimers, with Sn3O3 and Sn2O2 rings. The distannoxanes exist as dimers with the formula [R2SnX]2O2 wherein the X groups (e.g., chloride –Cl, hydroxide –OH, carboxylate
RCO2) can be terminal or bridging (see Table). The hydrolysis of the monoorganotin trihalides has the potential to generate stannanoic acids, RSnO2H. As for the diorganotin oxides/hydroxides, the monoorganotin species form structurally complex because of the occurrence of dehydration/hydration, aggregation. Illustrative is the hydrolysis of butyltin trichloride to give [(CH3(CH2)3Sn)12O14(OH)6]2+.

  • Idealized structure of trimeric diorganotin oxide.
    Idealized structure of trimeric diorganotin oxide.
  • Ball-and-stick model for (((CH3)3C)2SnO)3.
    Ball-and-stick model for (((CH3)3C)2SnO)3.
  • Structure of diorganotin oxide, highlighting the extensive intermolecular bonding.
    Structure of diorganotin oxide, highlighting the extensive intermolecular bonding.

Hypercoordinated stannanes

Unlike carbon(IV) analogues but somewhat like silicon compounds, tin(IV) can also be

bipyridine
).

The all-organic penta- and hexaorganostannates(IV) have even been characterized,[7] while in the subsequent year a six-coordinated tetraorganotin compound was reported.[8] A crystal structure of room-temperature stable (in argon) all-carbon pentaorganostannate(IV) was reported as the lithium salt with this structure:[9]

Pentaorganostannane

In this distorted

apical
, 2.17 Å equatorial) are longer than regular C-Sn bonds (2.14 Å) reflecting its hypercoordinated nature.

Triorganotin cations

Some reactions of triorganotin halides implicate a role for R3Sn+ intermediates. Such cations are analogous to carbocations. They have been characterized crystallographically when the organic substituents are large, such as 2,4,6-triisopropylphenyl.[10]

Tin radicals (organic derivatives of tin(III))

Tin radicals, with the formula R3Sn, are called stannyl radicals.[2] They are invoked as intermediates in certain atom-transfer reactions. For example, tributyltin hydride (tris(n-butyl)stannane) serves as a useful source of "hydrogen atoms" because of the stability of the tributytin radical.[11]

Organic derivatives of tin(II)

Organotin(II) compounds are somewhat rare. Compounds with the empirical formula SnR2 are somewhat fragile and exist as rings or polymers when R is not bulky. The polymers, called polystannanes, have the formula (SnR2)n.

In principle, compounds of tin(II) might be expected to form a tin analogues of

dimerize to the distannylene upon crystallization:[12]

2 R2Sn ⇌ R2Sn=SnR2

Stannenes, compounds with tin-carbon double bonds, are exemplified by derivatives of stannabenzene. Stannoles, structural analogs of cyclopentadiene, exhibit little C-Sn double bond character.

Organic derivatives of tin(I)

Compounds of Sn(I) are rare and only observed with very bulky ligands. One prominent family of cages is accessed by pyrolysis of the 2,6-diethylphenyl-substituted tristannylene [Sn(C6H3-2,6-Et2)2]3, which affords the cubane-type cluster and a prismane. These cages contain Sn(I) and have the formula [Sn(C6H3-2,6-Et2)]n where n = 8, 10 and Et stands for ethyl group.[13] A stannyne contains a tin atom to carbon group atom triple bond (e.g. R−Sn≡C−R and R−Sn≡Si−R), and a distannyne a triple bond between two tin atoms (R−Sn≡Sn−R). Distannynes only exist for extremely bulky substituents. Unlike alkynes, the C−Sn≡Sn−C core of these distannynes are nonlinear, although they are planar. The Sn-Sn distance is 3.066(1) Å, and the Sn-Sn-C angles are 99.25(14)°. Such compounds are prepared by reduction of bulky aryltin(II) halides.[14]

White (smallest) balls: H
Grey balls: C
Magenta (largest) balls: Sn
Structure of an Ar10Sn10 "prismane", a compound containing Sn(I) (Ar = 2,6-diethylphenyl).

Preparation

Organotin compounds can be synthesised by numerous methods.

tin tetrachloride. An example is provided by the synthesis of tetraethyltin:[16]

4 CH3CH2MgBr + SnCl4 → (CH3CH2)4Sn + 4 MgClBr

The symmetrical tetraorganotin compounds, especially tetraalkyl derivatives, can then be converted to various mixed chlorides by

redistribution reactions
(also known as the "Kocheshkov comproportionation" in the case of organotin compounds):

3 R4Sn + SnCl4 → 4 R3SnCl
R4Sn + SnCl4 → 2 R2SnCl2
R4Sn + 3 SnCl4 → 4 RSnCl3

A related method involves redistribution of tin halides with

organoaluminium compounds
.

The mixed organo-halo tin compounds can be converted to the mixed organic derivatives, as illustrated by the synthesis of dibutyldivinyltin:[17]

Bu2SnCl2 + 2 CH2=CHMgBr → Bu2Sn(CH=CH2)2 + 2 MgBrCl

The organotin hydrides are generated by reduction of the mixed alkyl chlorides. For example, treatment of dibutyltin dichloride with lithium aluminium hydride gives the dibutyltin dihydride, a colourless distillable oil:[18]

2 Bu2SnCl2 + Li[AlH4] → 2 Bu2SnH2 + Li[AlCl4]

The

alkyl sodium compounds
with tin halides yields tetraorganotin compounds.

Hydrostannylation involves the metal-catalyzed addition of tin hydrides across unsaturated substrates.[19]

Reactions

Important reactions, discussed above, usually focus on organotin

imines,[citation needed] whereas hydrostannylation conveniently reduces only unpolarized multiple bonds.[21]

In "pure"

organic halides (e.g. vinyl chloride CH2=CHCl) catalyzed by palladium
:

R1−X + R2−Sn(R3)3 Pd catalyst———→ R1−R2 + X−Sn(R3)3

Organotin compounds are also used extensively in radical chemistry (e.g. radical cyclizations, Barton–McCombie deoxygenation, Barton decarboxylation, etc.).

Applications

An organotin compound is commercially applied as stabilizers in

silicones, and transesterification.[2]

tin dioxide layers on glass bottles by chemical vapor deposition
.

Biological applications

"

Tributyltin compounds were once widely used as marine anti-

nanogram per liter) led to a worldwide ban by the International Maritime Organization. As anti-fouling compounds, organotin compounds have been replaced by dichlorooctylisothiazolinone.[23]

Toxicity

The toxicities of tributyltin and triphenyltin derivative compounds are comparable to that of

phytotoxic and therefore cannot be used in agriculture. Depending on the organic groups, they can be powerful bactericides and fungicides. Reflecting their high bioactivity, "tributyltins" were once used in marine anti-fouling paint.[2]

In contrast to the triorganotin compounds, monoorgano, diorgano- and tetraorganotin compounds are far less dangerous,[4] although DBT may be immunotoxic.[25]

See also

References

External links