Timeline of the early universe

Source: Wikipedia, the free encyclopedia.

Diagram of Evolution of the universe from the Big Bang (left) to the present

The timeline of the early universe outlines the formation and subsequent evolution of the Universe from the Big Bang (13.799 ± 0.021 billion years ago) to the present day. An epoch is a moment in time from which nature or situations change to such a degree that it marks the beginning of a new era or age.

Times on this list are measured from the moment of the Big Bang.

The first 20 minutes

Planck epoch

Grand unification epoch

Electroweak epoch

Quark epoch

Hadron epoch

  • c. 10−6 seconds:
    atomic nuclei
    .

Lepton epoch

Photon epoch

Matter era

Matter and radiation equivalence

  • c. 47,000 years (z=3600): Matter and radiation equivalence: at the beginning of this era, the expansion of the universe was decelerating at a faster rate.
  • c. 70,000 years: Matter domination in Universe: onset of gravitational collapse as the Jeans length at which the smallest structure can form begins to fall.

Cosmic Dark Age

WMAP
data

Galaxy epoch

  • 1 billion years (12.8
    galaxy superclusters
    appear.
  • 1.1 billion years (12.7 Gya): Age of the
    PSR B1620-26 b forms. It is a gas giant known as the "Genesis Planet" or "Methusaleh." The oldest observed exoplanet in the Universe, it orbits a pulsar and a white dwarf
    .
  • 1.13 billion years (12.67 Gya): Messier 12, globular cluster, forms
  • 1.3 billion years (12.5 Gya):
    PSR J1719-1438 b
    , known as the Diamond Planet, forms around a pulsar.
  • 1.31 billion years (12.49 Gya): Globular Cluster Messier 53 forms 60,000 light-years from the Galactic Center of the Milky Way
  • 1.39 billion years (12.41 Gya): S5 0014+81, a hyper-luminous quasar, forms
  • 1.4 billion years (12.4 Gya): Age of Cayrel's Star, BPS C531082-0001, a neutron capture star, among the oldest Population II stars in Milky Way. Quasar RD1, first object observed to exceed redshift 5, forms.
  • 1.44 billion years (12.36 Gya):
    blue stragglers
    "
  • 1.5 billion years (12.3 Gya): Messier 55, globular cluster, forms
  • 1.8 billion years (12 Gya): Most energetic gamma ray burst lasting 23 minutes, GRB 080916C, recorded. Baby Boom Galaxy forms. Terzan 5 forms as a small dwarf galaxy on collision course with the Milky Way. Dwarf galaxy carrying the Methusaleh Star consumed by Milky Way – oldest-known star in the Universe becomes one of many population II stars of the Milky Way
  • 2.0 billion years (11.8 Gya): SN 1000+0216, the oldest observed supernova occurs – possible pulsar formed. Globular Cluster Messier 15, known to have an intermediate black hole and the only globular cluster observed to include a planetary nebula, Pease 1, forms
  • 2.02 billion years (11.78 Gya):
    variable stars (89) many of which are RR Lyrae
    stars.
  • 2.2 billion years (11.6 Gya): Globular Cluster NGC 6752, third-brightest, forms in Milky Way
  • 2.4 billion years (11.4 Gya): Quasar PKS 2000-330 forms.
  • 2.41 billion years (11.39 Gya):
    Oosterhoff type I
    cluster, which is considered "metal-rich". That is, for a globular cluster, Messier 3 has a relatively high abundance of heavier elements.
  • 2.5 billion years (11.3 Gya): Omega Centauri, largest globular cluster in the Milky Way forms
  • 2.6 billion years (11.2 Gya): HD 130322 planetary system, known as the first observed exoplanet system, forms
  • 3.0 billion years (10.8 billion Gya): Formation of the
    habitable planets
    , form. Gliese 581d has more potential for forming life since it is the first exoplanet of terrestrial mass proposed that orbits within the habitable zone of its parent star.
  • 3.3 billion years (10.5 Gya): BX442, oldest grand design spiral galaxy observed, forms
  • 3.5 billion years (10.3 Gya): Supernova SN UDS10Wil recorded
  • 3.8 billion years (10 Gya): NGC 2808 globular cluster forms: 3 generations of stars form within the first 200 million years.
  • 4.0 billion years (9.8 Gya): Quasar
    GRB 991216 recorded. Gliese 677 Cc, a planet in the habitable zone of its parent star, Gliese 667
    , forms
  • 4.5 billion years (9.3 Gya): Fierce star formation in Andromeda making it into a luminous
    infra-red
    galaxy
  • 5.0 billion years (8.8 Gya): Earliest
    asteroids, and icy comets
  • 5.1 billion years (8.7 Gya): Galaxy collision: spiral arms of the Milky Way form leading to major period of star formation.
  • 5.3 billion years (8.5 Gya):
    Kepler 11 planetary system, the flattest and most compact system yet discovered, forms – Kepler 11 c
    considered to be a giant ocean planet with hydrogen-helium atmosphere.
  • 5.8 billion years (8 Gya): 51 Pegasi b also known as Dimidium, forms – first planet discovered orbiting a main sequence star
  • 5.9 billion years (7.9 Gya):
    astrometrics
    , forms
  • 6.0 billion years (7.8 Gya): Many galaxies like NGC 4565 become relatively stable – ellipticals result from collisions of spirals with some like IC 1101 being extremely massive.
  • 6.0 billion years (7.8 Gya): The Universe continues to organize into larger wider structures. The great walls, sheets and filaments consisting of galaxy clusters and superclusters and voids crystallize. How this crystallization takes place is still conjecture. Certainly, it is possible the formation of super-structures like the Hercules–Corona Borealis Great Wall may have happened much earlier, perhaps around the same time galaxies first started appearing. Either way the observable universe becomes more modern looking.
  • 6.2 billion years (7.7 Gya):
    trinary star system
    , forms – orbiting moons considered to have habitable properties or at the least capable of supporting water
  • 6.3 billion years (7.5 Gya, z=0.94):
    Sagittarius Dwarf Elliptical Galaxy
  • 6.5 billion years (7.3 Gya): HD 10180 planetary system forms (larger than both 55 Cancri and Kepler 11 systems)
  • 6.9 billion years (6.9 Gya): Orange Giant, Arcturus, forms
  • 7.64 billion years (6.16 Gya): Mu Arae planetary system forms: of four planets orbiting a yellow star, Mu Arae c is among the first terrestrial planets to be observed from Earth
  • 7.8 billion years (6.0 Gya): Formation of Earth's near twin,
    Kepler 452
  • 7.98 billion years (5.82 Gya): Formation of Mira or Omicron ceti, binary star system. Formation of Alpha Centauri Star System, closest star to the Sun. GJ 1214 b, or Gliese 1214 b, potential Earth-like planet, forms
  • 8.2 billion years (5.6 Gya): Tau Ceti, nearby yellow star forms: five planets eventually evolve from its planetary nebula, orbiting the star – Tau Ceti e considered planet to have potential life since it orbits the hot inner edge of the star's habitable zone
  • 8.5 billion years (5.3 Gya): GRB 101225A, the "Christmas Burst", considered the longest at 28 minutes, recorded

Acceleration

  • 8.8 billion years (5 Gya, z=0.5):
    matter-dominated era during which cosmic expansion was slowing down.[11]
  • 8.8 billion years (5 Gya): Messier 67 open star cluster forms: Three exoplanets confirmed orbiting stars in the cluster including a twin of the Sun
  • 9.0 billion years (4.8 Gya): Lalande 21185, red dwarf in Ursa Major, forms
  • 9.13 billion years (4.67 Gya): Proxima Centauri forms completing the Alpha Centauri trinary system
Notable cosmological and other events of the natural history depicted in a spiral. In the center left the primal supernova can be seen and continuing the creation of the Sun, the Earth and the Moon (by Theia impact) can be seen

Epochs of the formation of the Solar System

Recent history

See also

References

  1. ^ Cheng, Ta-Pei; Li, Ling-Fong (1983). Gauge Theory of Elementary Particle Physics. .
  2. ^ Guth, "Phase transitions in the very early universe", in: Hawking, Gibbon, Siklos (eds.), The Very Early Universe (1985).
  3. S2CID 2777386
    . Retrieved 15 December 2014.
  4. .
  5. ^ Dreifus, Claudia (2 December 2014). "Much-Discussed Views That Go Way Back – Avi Loeb Ponders the Early Universe, Nature and Life". The New York Times. Retrieved 3 December 2014.
  6. ^ R. Cowen (10 January 2013). "Nearby star is almost as old as the Universe".
    S2CID 124435627
    . Retrieved 23 February 2013.
  7. ^ Simion @Yonescat, Florin. "Scientists have spotted the farthest galaxy ever". The Royal Astronomical Society. Retrieved 13 July 2023.
  8. ^ Wall, Mike (12 December 2012). "Ancient Galaxy May Be Most Distant Ever Seen". Space.com. Retrieved 12 December 2012.
  9. ^ Collaborative (11 April 2007). "Discovery of HE 1523–0901". Astrophysical Journal Letters. 660. CaltechAUTHORS: L117–L120. Retrieved 19 February 2019.
  10. ^ "GRB 090423 goes Supernova in a galaxy, far, far away". Zimbio. Archived from the original on 5 January 2013. Retrieved 23 February 2010.
  11. S2CID 15117520
    .
  12. ^ Nola Taylor Redd (8 June 2017). "How Old is the Universe?". Space. Archived from the original on 17 February 2019. Retrieved 19 February 2019.