Plasmon

Source: Wikipedia, the free encyclopedia.

In

photons, the plasma oscillation consists of plasmons. The plasmon can be considered as a quasiparticle since it arises from the quantization of plasma oscillations, just like phonons are quantizations of mechanical vibrations. Thus, plasmons are collective (a discrete number) oscillations of the free electron gas density. For example, at optical frequencies, plasmons can couple with a photon to create another quasiparticle called a plasmon polariton
.

The field of study and manipulation of plasmons is called plasmonics.

Derivation

The plasmon was initially proposed in 1952 by David Pines and David Bohm[1] and was shown to arise from a Hamiltonian for the long-range electron-electron correlations.[2]

Since plasmons are the quantization of classical plasma oscillations, most of their properties can be derived directly from Maxwell's equations.[3]

Explanation

Plasmons can be described in the classical picture as an

damping. Plasmons are a quantization
of this kind of oscillation.

Role

Plasmons play a huge role in the

valence electron plasmon frequency is usually in the deep ultraviolet, while their electronic interband transitions are in the visible range, whereby specific light energies (colors) are absorbed, yielding their distinct color[6][7] which is why they are reflective. It has been shown that the plasmon frequency may occur in the mid-infrared and near-infrared region when semiconductors are in the form of nanoparticles with heavy doping.[8][9]

The plasmon energy can often be estimated in the free electron model as

where is the

conduction electron
density, is the elementary charge, is the electron mass, the
permittivity of free space
, the
reduced Planck constant
and the
plasmon frequency
.

Surface plasmons

dielectric constant, (e.g. vacuum, air, glass and other dielectrics) and a material whose real part of permittivity is negative at the given frequency of light, typically a metal or heavily doped semiconductors. In addition to opposite sign of the real part of the permittivity, the magnitude of the real part of the permittivity in the negative permittivity region should typically be larger than the magnitude of the permittivity in the positive permittivity region, otherwise the light is not bound to the surface (i.e. the surface plasmons do not exist) as shown in the famous book by Heinz Raether.[11] At visible wavelengths of light, e.g. 632.8 nm wavelength provided by a He-Ne laser, interfaces supporting surface plasmons are often formed by metals like silver or gold (negative real part permittivity) in contact with dielectrics such as air or silicon dioxide. The particular choice of materials can have a drastic effect on the degree of light confinement and propagation distance due to losses. Surface plasmons can also exist on interfaces other than flat surfaces, such as particles, or rectangular strips, v-grooves, cylinders, and other structures. Many structures have been investigated due to the capability of surface plasmons to confine light below the diffraction limit of light. One simple structure that was investigated was a multilayer system of copper and nickel. Mladenovic et al. report the use of the multilayers as if its one plasmonic material.[12]
Oxidation of the copper layers is prevented with the addition of the nickel layers. It is an easy path the integration of plasmonics to use copper as the plasmonic material because it is the most common choice for metallic plating along with nickel. The multilayers serve as a diffractive grating for the incident light. Up to 40 percent transmission can be achieved at normal incidence with the multilayer system depending on the thickness ratio of copper to nickel. Therefore, the use of already popular metals in a multilayer structure prove to be solution for plasmonic integration.

Surface plasmons can play a role in surface-enhanced Raman spectroscopy and in explaining anomalies in diffraction from metal gratings (Wood's anomaly), among other things. Surface plasmon resonance is used by biochemists to study the mechanisms and kinetics of ligands binding to receptors (i.e. a substrate binding to an enzyme). Multi-parametric surface plasmon resonance can be used not only to measure molecular interactions but also nanolayer properties or structural changes in the adsorbed molecules, polymer layers or graphene, for instance.

Surface plasmons may also be observed in the X-ray emission spectra of metals. A dispersion relation for surface plasmons in the X-ray emission spectra of metals has been derived (Harsh and Agarwal).[13]

Gothic stained glass rose window of Notre-Dame de Paris. Some colors were achieved by colloids of gold nano-particles.

More recently surface plasmons have been used to control colors of materials.

nm
. This is much more difficult and has only recently become possible to do in any reliable or available way.

Recently, graphene has also been shown to accommodate surface plasmons, observed via near field infrared optical microscopy techniques[15][16] and infrared spectroscopy.[17] Potential applications of graphene plasmonics mainly addressed the terahertz to midinfrared frequencies, such as optical modulators, photodetectors, biosensors.[18]

Possible applications

The position and intensity of plasmon absorption and emission peaks are affected by molecular adsorption, which can be used in molecular sensors. For example, a fully operational device detecting casein in milk has been prototyped, based on detecting a change in absorption of a gold layer.[19] Localized surface plasmons of metal nanoparticles can be used for sensing different types of molecules, proteins, etc.

Plasmons are being considered as a means of transmitting information on

GHz). However, for plasmon-based electronics to be practical, a plasmon-based amplifier analogous to the transistor, called a plasmonstor, needs to be created.[20]

Plasmons have also been proposed as a means of high-resolution lithography and microscopy due to their extremely small wavelengths; both of these applications have seen successful demonstrations in the lab environment.

Finally, surface plasmons have the unique capacity to confine light to very small dimensions, which could enable many new applications.

Surface plasmons are very sensitive to the properties of the materials on which they propagate. This has led to their use to measure the thickness of monolayers on colloid films, such as screening and quantifying protein binding events. Companies such as Biacore have commercialized instruments that operate on these principles. Optical surface plasmons are being investigated with a view to improve makeup by L'Oréal and others.[21]

In 2009, a Korean research team found a way to greatly improve

organic light-emitting diode efficiency with the use of plasmons.[22]

A group of European researchers led by IMEC has begun work to improve solar cell efficiencies and costs through incorporation of metallic nanostructures (using plasmonic effects) that can enhance absorption of light into different types of solar cells: crystalline silicon (c-Si), high-performance III-V, organic, and dye-sensitized.

transparent conducting oxides are necessary.[24]
Full color
holograms using plasmonics[25]
have been demonstrated.

Plasmon-soliton

Plasmon-soliton mathematically refers to the hybrid solution of nonlinear amplitude equation e.g. for a metal-nonlinear media considering both the plasmon mode and solitary solution. A soliplasmon resonance is on the other hand considered as a quasiparticle combining the surface plasmon mode with spatial soliton as a result of a resonant interaction.

surface plasmons
should be localized at the interface, the lateral distribution of the field envelope should also be unchanged.

Graphene-based waveguide is a suitable platform for supporting hybrid plasmon-solitons due to the large effective area and huge nonlinearity.[30] For example, the propagation of solitary waves in a graphene-dielectric heterostructure may appear as in the form of higher order solitons or discrete solitons resulting from the competition between diffraction and nonlinearity.[31][32]

See also

Footnotes

  1. .
  2. .
  3. ^ Jackson, J. D. (1975) [1962]. "10.8 Plasma Oscillations". Classical Electrodynamics (2nd ed.). New York:
    OCLC 535998
    .
  4. ^ Burdick, Glenn (1963). "Energy Band Structure of Copper". .
  5. .
  6. ^ Kittel, C. (2005).
    John Wiley & Sons
    . p. 403, table 2.
  7. ^ Böer, K. W. (2002). Survey of Semiconductor Physics. Vol. 1 (2nd ed.).
    John Wiley & Sons
    . p. 525.
  8. S2CID 18960914
    .
  9. .
  10. .
  11. .
  12. .
  13. .
  14. ^ "LEDs work like butterflies' wings". BBC News. November 18, 2005. Retrieved May 22, 2010.
  15. S2CID 4431470
    .
  16. .
  17. .
  18. .
  19. ^ Heip, H. M.; et al. (2007). "A localized surface plasmon resonance based immunosensor for the detection of casein in milk". Science and Technology of Advanced Materials. 8 (4): 331–338.
    S2CID 136613827
    .
  20. ^ Lewotsky, Kristin (2007). "The Promise of Plasmonics". SPIE Professional. .
  21. ^ "The L'Oréal Art & Science of Color Prize – 7th Prize Winners".
  22. ^ "Prof. Choi Unveils Method to Improve Emission Efficiency of OLED". KAIST. 9 July 2009. Archived from the original on 18 July 2011.
  23. ^ "EU partners eye metallic nanostructures for solar cells". ElectroIQ. 30 March 2010. Archived from the original on 8 March 2011.
  24. .
  25. ^ Kawata, Satoshi. "New technique lights up the creation of holograms". Phys.org. Retrieved 24 September 2013.
  26. S2CID 119203392
    .
  27. .
  28. .
  29. .
  30. .
  31. .
  32. .

References

External links