Science and technology in Indonesia

Source: Wikipedia, the free encyclopedia.

CASA of Spain and IPTN
of Indonesia as a regional airliner and military transport.
Vaccine vials in Bio Farma, Bandung.

Indonesia is to be considered as one of the leading countries in science and technology developments. There are numerous examples of notable scientific and technological innovation, developments and achievements contributed by Indonesians. Despite being a developing country, Indonesia is one of a handful nations that have developed their own aerospace technology.[1]

Since

National Research and Innovation Agency (BRIN), as the sole multidisciplinary sciences, research, and technology development superagency dedicated to science and research in the country, replacing the Indonesian Institute of Sciences
(LIPI) and other state research and development agencies.

Since 2018 Indonesian government increased their research and development allocation. In 2018, government allocated Rp33 trillion (approximately US$2,317,985,439 as on 6 September 2021). In 2019, government allocated Rp35 trillion (approximately US$2,458,469,405 as on 6 September 2021). In 2020, government allocated Rp36 trillion (approximately US$2,528,712,000 as on 6 September 2021) for research and development.[2] Despite has increasing trend over years, it is very small, roughly around 0.31% of Indonesia's gross domestic product.[3] Not only that, private sector contribution on Indonesia research is very low. In 2020, 83.88% research funding relied on government, followed by universities (2.65%), business companies (9.15%), and non-profit private groups (4.33%).[4]

History

Drawing of a Pinisi-rigged lamba.

Living in an agrarian and maritime culture, the people of the

terracing. Local systems of complex irrigation and water management have been developed in the archipelagos. An exceptional example is Subak, the irrigation system of Bali
.

The

Nusantara is already accomplished sailor since at least 1500 years B.C. During that era the distribution of kapur Barus already reached ancient Egypt.[5]
: 1 

The Austronesians also reached

jong.[7]: 41–42  A Chinese record in 200 AD, describes the K'un-lun Po (meaning "ship/perahu from K'un-lun" — Either Java or Sumatra) as being capable of carrying 600–700 people and 250–1000 tons of cargo.[8]: 347 [9]
: 262 

The Konjo, Ara and Lemo-Lemo people from the island of

Buginese, Makassar, and Bira people built these vessels, in reality they are just sail them, not the builder.[11]

The Javanese and Malay people, like other Austronesian ethnicities, use a solid navigation system: Orientation at sea is carried out using a variety of different natural signs, and by using a very distinctive

star path navigation". Basically, the navigators determine the bow of the ship to the islands that are recognized by using the position of rising and setting of certain stars above the horizon.[12]: 10  In the Majapahit era, compasses and magnets were used, and cartography (mapping science) was developed: The use of maps full of longitudinal and transverse lines, rhumb lines, and direct route lines traveled by ships were recorded by Europeans, to the point that the Portuguese considered the Javanese maps to be the best maps in the early 1500s.[13]: 249 [14]: lxxix [5]: 163–164, 166–168 [15]

In architecture, native Indonesians have developed their own vernacular architecture. Some examples of architecturally significant Indonesian buildings are Rumah Gadang of Minangkabau, Tongkonan of Toraja, and omo sebua of Nias. The Omo Sebua is noted for its sturdy yet flexible design which allows it to resist earthquake.

Half cross-section of Borobudur

By the 8th century, the Javanese kingdom of

stone mason architectural technology in candi (temple) building. This includes the magnificent Borobudur temple, Prambanan temple, and many other temples. Architectural techniques that have been developed include knobs, indentations and dovetails used to form joints between stones and bind them without mortar. Other significant architectural advancements include: the roof, niches, and arched gateways constructed in the corbelling
method.

Museum and lab of the Buitenzorg Plantentuin

The scientific quest and systematic research in accordance to the modern

botanical research
established in 1817, with the aim to study the flora and fauna of the archipelago.

beriberi disease was discovered by Eijkman
during his work in the Indies.

Bosscha Observatory built in 1923, today is operated by Bandung Institute of Technology

With growing interest in scientific research, the government of the Dutch East Indies established Natuurwetenschappelijke Raad voor Nederlandsch-Indië (Scientific Council of the Dutch East Indies) in 1928. It operates as the country's main research organization until the outbreak of Pacific War in 1942. In 1948 the institute was renamed Organisatie voor Natuurwetenschappelijk Onderzoek (OPIPA, Organization for Scientific Research).

After the independence of Indonesia, the government continued to nurture the scientific development and pursuit, through government institutions. In 1956 the OPIPA was nationalized as Majelis Ilmu Pengetahuan Indonesia (MIPI, Indonesian Sciences Council). Then in 1962 the government established the Departemen Urusan Riset Nasional (DURENAS, National Research Affairs Department), while MIPI are in charge of founding and operates various National Research Institutes. And in 1966 the government changed the status of DURENAS into Lembaga Riset Nasional (LEMRENAS) (National Research Institute). In August 1967 the government dissolved LEMRENAS and MIPI and established the current Indonesian Institute of Sciences (LIPI), which runs the scientific efforts and operations that was previously conducted by LEMRENAS and MIPI.[16]

One of four pillars of

Vision of Indonesia 2045 is the "human development and the mastery of science and technology". This Indonesian ideal that set the goal for the country by its centennial in 2045, duly recognized and realized the importance of science and technology for the future of the nation.[17]

On 2021, Indonesia experienced reform in science and technology field with formation of Ministry of Education, Culture, Research, and Technology and National Research and Innovation Agency as part of the government plan in consolidating science and research resources.[18][19][20]

Institutions

Indonesian Institute of Sciences building in Jakarta

Among the main research and development institutions in the country, are:

Indonesia has many universities. Among the most renowned are the University of Indonesia, the Bandung Institute of Technology and Gadjah Mada University, which offer science courses.[21] Indonesia ranked 61st on the 2023 Global Innovation Index report up from 87th in 2021.[22][23]

Main areas

Biotechnology

In October 1994, the State created the Biotechnology Consortium (IBC) whose aim is to develop and use the contributions of biotechnology for the benefit of the population, the country, and the conservation of the environment. Around 34 government institutions work in the biotechnology sector. In 2005, the country hosted the BINASIA-Indonesia National Workshop to promote investment in this sector.

Food processing technology

tuak, brem and tapai
.

Indonesians have also made various advances in

tuak. Tempeh is made through natural culturing and a controlled fermentation process, which employs the fungi Rhizopus oligosporus or Rhizopus oryzae,[24] The fungi binds soybeans into a cake form. It has higher content of protein, dietary fiber, and vitamins.[25]

Construction technology

Elevated toll road on Jalan Ahmad Yani by pass, Jakarta, which employed the Sosrobahu construction technique that rotates the beam-supporting bar on each pylon.

There are some notable technological developments made by natives in modern Indonesia (post independence). In the 1980s, Tjokorda Raka Sukawati, an Indonesian engineer, invented a road construction technique called Sosrobahu. It became popular afterwards and has since been widely used by many countries. The Sosrobahu technique allows long stretches of flyovers to be constructed above existing main roads, therefore minimizes disruptions to the heavy traffic. It involves the construction of horizontal supports for the highway beside the existing road, which is then lifted and turned at a 90 degree angle before being placed on the top of the vertical supports. This forms the flyover pylons. The technology was exported to the Philippines, Malaysia, Thailand and Singapore. In 1995, a patent was granted to Indonesia.[26]

The Cakar ayam construction, or literally means "chicken claw construction" is a technical engineering to create a more stable foundation by employing concrete plate supported by pipes planted deep into the ground acted as "claws", invented by Prof. Dr. Ir. Sedijatmo in 1961. The technique can be applied on structures, roads and runways. The technical principle consist of a concrete plate foundation is supported and secured to the ground by pipes as "claws", which allows a more stable construction, enable to build structure on soft wet ground such as on swamps. The technique allowed the structure to be more rigid, stable and more durable against uneven weight distribution or uneven land declining.[27]

The Konstruksi Sarang Laba-Laba (or Cobweb Construction in English) is a construction technique on the foundation of a building in the form of concrete with cobweb shaped iron beams inside it. This construction technique designed by an engineer Ir. Ryantori. The 4 stories building that used the construction technique was proven earthquake resistant during the earthquake in Aceh in 2004.

Aerospace and transportation

CN-235
.

Indonesia has a long history in developing military and small commuter aircraft. In fact, it is the only country in Southeast Asia to produce and develop its own aircraft. Its state-owned aircraft company (founded in 1976),

N-219, a twin-engine 19-seater commuter airplane.[1]

Wiweko Soepono, a former Garuda Indonesia director, is also known as inventor of the modern two-man cockpit design (Forward Facing Crew Cockpit/FFCC), for Garuda Indonesia Airbus A300 aircraft.[30]

Furthermore, Indonesia has a well-established railway industry with its state-owned train manufacturing company, the Indonesian Railway Industry (Indonesian: PT. Industri Kereta Api), located in Madiun, East Java. Since 1982, the company has been producing passenger train wagons, freight wagons and other railway technologies which it has exported to many countries such as Malaysia and Bangladesh.[31]

Logistics technology

Indonesia has become a hub for disruptive technology in the logistics sector. Mobile app-based companies like GoTo and Deliveree have had a large impact on the way parcel, goods, and freight are transported around the country. Logisitcs technology adoption in the country has been substantial with GoTo reporting 100 million[32] monthly active users across its multiple service lines including transportation services for passengers, food, parcels, goods, and freight.

Information, communication and digital technology

Indonesia was one of few countries during the 1970s to own their own

communication satellite. Since 1976, a series of satellites named Palapa were built and launched in the United States for Indonesia's state-owned telecommunication company, Indosat. LAPAN, Indonesia's space agency, has expressed a desire to put satellites in orbit with native launch vehicles by 2040.[33]

In Internet technology, an Indonesian information technology scientist, Onno W. Purbo developed RT/RW-net, a community-based internet infrastructure which provides affordable Internet access to people in rural areas.[34]

In 2010s

Blibli
.

Robotics

Indonesian students have a good record of winning many international competitions in science and technology. In 2009, the robotics team from Indonesian Computer University won the gold medal in the “open fire-fighting autonomous robot” category at the

Tenth of November Institute of Technology won third place in Robocon 2008, a robotics contest hosted by the Asia-Pacific Broadcast Union (ABU) in Pune, India.[37]

Notable people

Habibie's memorial in Gorontalo, he is remembered as the prominent figure in Indonesian science and technology, especially in aeronautics sector.

See also

Bibliography

References

  1. ^ a b Marguerite Afra Sapiie. "N-219: Propelling Indonesia's aerospace industry". The Jakarta Post.
  2. ^ Fauzi; Budiman, Budisantoso (6 September 2021). "Anggota DPR menyoroti kewenangan Dewan Pengarah BRIN". Antara News. Retrieved 6 September 2021.
  3. ^ Dongche, Yenglis; Radjah, Jimmy (4 May 2021). "Anggaran Riset Indonesia Terendah di ASEAN". infoanggaran.com. Retrieved 6 September 2021.
  4. ^ Ulya, Fika Nurul; Jatmiko, Bambang P. (4 March 2020). "Ristekdikti: 80 Persen Dana Riset Masih Andalkan APBN". KOMPAS.com (in Indonesian). Retrieved 6 September 2021.
  5. ^ .
  6. .
  7. ^ Dick-Read, Robert (2005). The Phantom Voyagers: Evidence of Indonesian Settlement in Africa in Ancient Times. Thurlton.
  8. – via JSTOR.
  9. ^ Manguin, Pierre-Yves (1993). "Trading Ships of the South China Sea. Shipbuilding Techniques and Their Role in the History of the Development of Asian Trade Networks". Journal of the Economic and Social History of the Orient. 36 (3): 253–280.
  10. ^ The Indonesian Phinisi
  11. ^ Biran Sailing, South Sulawesi, by Horst Liebner. Archived 2020-01-20 at the Wayback Machine
  12. ^ Liebner, Horst H. (2005), "Perahu-Perahu Tradisional Nusantara: Suatu Tinjauan Perkapalan dan Pelayaran", in Edi, Sedyawati (ed.), Eksplorasi Sumberdaya Budaya Maritim, Jakarta: Pusat Riset Wilayah Laut dan Sumber Daya Nonhayati, Badan Riset Kelautan dan Perikanan; Pusat Penelitian Kemasyarakatan dan Budaya, Universitas Indonesia, pp. 53–124
  13. ^ Jones, John Winter (1863). The travels of Ludovico di Varthema in Egypt, Syria, Arabia Deserta and Arabia Felix, in Persia, India, and Ethiopia, A.D. 1503 to 1508. Hakluyt Society.
  14. ISBN 9784000085052. Public Domain This article incorporates text from this source, which is in the public domain
    .
  15. ^ "Majapahit-era Technologies". Nusantara Review. 2 October 2018. Retrieved 11 June 2020.
  16. ^ "Selamat Ulang Tahun, LIPI!". lipi.go.id (in Indonesian). Retrieved 12 March 2020.
  17. ^ "4 Pilar Visi Indonesia 2045". indonesiabaik.id (in Indonesian). Retrieved 12 March 2020.
  18. ^ detikcom, Tim (10 April 2021). "Bolak-balik Kementerian Pendidikan Era Jokowi Diotak-atik". detiknews (in Indonesian). Retrieved 6 September 2021.
  19. ^ Muttaqin, Muhammad (10 August 2021). "Jokowi Instruksikan BRIN Konsolidasikan Riset & Inovasi Nasional | Teknologi". Gatra (in Indonesian). Retrieved 6 September 2021.
  20. ^ Nua, Faustinus (27 May 2021). "Konsolidasi Tahap I BRIN Libatkan 12 Ribu Pegawai dan Rp26,8 T". mediaindonesia.com (in Indonesian). Retrieved 6 September 2021.
  21. ^ "ITB, UGM, UI named top three universities in Indonesia". The Jakarta Post. Retrieved 12 March 2020.
  22. ^ WIPO. "Global Innovation Index 2023, 15th Edition". www.wipo.int. Retrieved 28 October 2023.
  23. ^ Dutta, Soumitra; Lanvin, Bruno; León Rivera, Lorena; Wunsch-Vincent, Sacha (20 September 2021). Global Innovation Index 2021: Tracking Innovation through the COVID-19 Crisis (14 ed.). World Intellectual Property Organization. p. 94.{{cite book}}: CS1 maint: multiple names: authors list (link)
  24. ^ "What is tempeh starter?". Tempeh.info.
  25. . Retrieved 6 May 2011.
  26. ^ Sosrobahu Bertumpu di Atas Piring
  27. ^ "Pondasi Cakar Ayam". ilmutekniksipil.com (in Indonesian). 12 October 2012.
  28. ^ Habibie receives honorary doctorate Archived 5 March 2016 at the Wayback Machine
  29. The Jakarta Globe, Jakarta, archived from the original
    on 18 September 2012, retrieved 18 November 2010
  30. ^ Wiweko Perancang Pesawat Indonesia Pertama
  31. ^ PT. INKA's Products
  32. ^ "Gojek and Tokopedia merge to form GoTo Group". TechCrunch. Retrieved 21 July 2022.
  33. ^ Faris Sabilar Rusydi (17 June 2016). "Lapan Target Luncurkan Roket Pengorbit Satelit Pada 2040" (in Indonesian). LAPAN. Archived from the original on 16 August 2017. Retrieved 16 August 2016.
  34. ^ Onno W. Purbo: Opening windows for knowledge
  35. ^ "Tentang Kami | Gojek". www.gojek.com. Retrieved 12 March 2020.
  36. ^ A Man and His Robot Make the Most of a Golden Opportunity
  37. ^ THE ROBOT TEAM OF ITS WON THE THIRD PLACE IN AN ASIA PACIFIC COMPETITION

External links