Timeline of condensed matter physics

Source: Wikipedia, the free encyclopedia.

This article lists the main historical events in the history of

phases of matter. Condensed matter refers to materials where particles (atoms, molecules, or ions) are closely packed together or under interaction, such as solids and liquids. This field explores a wide range of phenomena, including the electronic, magnetic, thermal, and mechanical properties of matter
.

This timeline includes developments in subfields of condensed matter physics such as theoretical

material physics, low-temperature physics, microscopic theories of magnetism in matter and optical properties of matter and metamaterials
.

Even if material properties were modeled before 1900, condensed matter topics were considered as part of physics since the development of quantum mechanics and microscopic theories of matter. According to Philip W. Anderson, the term "condensed matter" appeared about 1965.[1]

For history of fluid mechanics, see timeline of fluid and continuum mechanics.

Before quantum mechanics

Prehistory

Antiquity

A piece of magnetite with permanent magnetic properties were noticed already in Ancient Greece

Classical theories before the 19th century

  • 1611 –
    hexagonal close packing arrangements.[11]
  • 1621 – Willebrord Snellius reformulates the laws of refraction and reflection of light into Snell's law.[12]
  • 1660 – Robert Hooke postulates the simplest equation of linear elasticity known as Hooke's law.[13]
  • 1687 – Isaac Newton postulates the Newton's laws of motion.[14]
  • 1729 – Scientist Stephen Gray discovers the electrical conduction of metals.[15]
  • 1778 – Diamagnetism was first discovered when Anton Brugmans observed in 1778 that bismuth was repelled by magnetic fields.[16]
  • 1781– René Just Haüy (often termed the "Father of Modern Crystallography"[17]) discovers that crystals always cleave along crystallographic planes. Based on this observation, and the fact that the inter-facial angles in each crystal species always have the same value, Haüy concluded that crystals must be periodic and composed of regularly arranged rows of tiny polyhedra (molécules intégrantes). This theory explained why all crystal planes are related by small rational numbers (the law of rational indices).[18][19]

19th century

Schema of the classical Hall effect discovered in 1879, where a voltage is created perpendicular to the current in a circuit due to the influence of a magnetic field.

20th century

Paul Drude, author of the Drude model in 1900. He understood that thermal properties of metals could be understood as a gas of free electrons.

Early 1900s

Second half of the 20th century

The liquid helium is in the superfluid phase. Discovered by Pyotr Kapitsa in 1938. First theoretically model with Ginzburg–Landau theory in 1950.
Graphene: a single atomic layer of graphite first produced in 2004.

21st century

See also

References

  1. ^ a b "Philip Anderson". Department of Physics. Princeton University. Retrieved 27 March 2012.
  2. ^ "Hand tool - Neolithic, Stone, Flint | Britannica". www.britannica.com. Retrieved 2023-10-12.
  3. ^ "Bronze Age". HISTORY. 2018-01-02. Retrieved 2023-10-12.
  4. ^ "Iron Age". HISTORY. 2018-01-03. Retrieved 2023-10-12.
  5. ^ .
  6. .
  7. ^ "Aristotle - Logic, Metaphysics, Ethics | Britannica". www.britannica.com. Retrieved 2023-10-12.
  8. S2CID 117259123
    .
  9. ^ Weisstein, Eric W. "Kepler Conjecture". mathworld.wolfram.com. Retrieved 2023-10-12.
  10. ^ "Snell's law | Definition, Formula, & Facts | Britannica". www.britannica.com. 2023-09-12. Retrieved 2023-10-12.
  11. ^ "Hooke's law | Description & Equation | Britannica". www.britannica.com. 11 October 2023. Retrieved 2023-10-12.
  12. .
  13. ^ "Electromagnetism - Discovery, Uses, Physics | Britannica". www.britannica.com. Retrieved 2024-04-04.
  14. ^ Gerald Küstler (2007). "Diamagnetic Levitation – Historical Milestones". Rev. Roum. Sci. Techn. – Électrotechn. Et Énerg. 52, 3: 265–282.
  15. ^ Brock, H. (1910). The Catholic Encyclopedia, New York: Robert Appleton Company.
  16. ^ Haüy, R.J. (1782). Sur la structure des cristaux de grenat, Observations sur la physique, sur l’histoire naturelle et sur les arts, XIX, 366-370
  17. ^ Haüy, R.J. (1782). Sur la structure des cristaux des spaths calcaires, Observations sur la physique, sur l’histoire naturelle et sur les arts. XX, 33-39
  18. ^ "Alessandro Volta | Biography, Facts, Battery, & Invention | Britannica". www.britannica.com. 2023-09-25. Retrieved 2023-10-12.
  19. ^ "Atom - Dalton, Bohr, Rutherford | Britannica". www.britannica.com. Retrieved 2023-10-12.
  20. .
  21. ^ "Dulong–Petit law | Thermodynamics, Heat Capacity, Specific Heat | Britannica". www.britannica.com. Retrieved 2023-10-12.
  22. ^ "Seebeck effect | Thermoelectricity, Temperature Gradients & Heat | Britannica". www.britannica.com. Retrieved 2023-10-12.
  23. ^ Frankenheim, M.L. (1826). Crystallonomische Aufsätze, Isis (Jena) 19, 497-515, 542-565
  24. ^ "Ohm's law | Physics, Electric Current, Voltage | Britannica". www.britannica.com. 2023-09-05. Retrieved 2023-10-12.
  25. ^ "Peltier effect | Definition, Discovery, & Facts | Britannica". www.britannica.com. 2023-09-26. Retrieved 2023-10-12.
  26. ^ Miller, W.H. (1839). A Treatise on Crystallography, Deighton-Parker, Cambridge, London
  27. ^ "James Prescott Joule | Biography & Facts | Britannica". www.britannica.com. 2023-10-07. Retrieved 2023-10-12.
  28. ^ "Faraday effect | Magnetic Field, Electromagnetic Induction & Polarization | Britannica". www.britannica.com. Retrieved 2023-10-12.
  29. ^ Pasteur, L. (1848). Mémoire sur la relation qui peut exister entre la forme cristalline et la composition chimique, et sur la cause de la polarisation rotatoire (Memoir on the relationship that can exist between crystalline form and chemical composition, and on the cause of rotary polarization), Comptes rendus de l'Académie des sciences (Paris), 26 : 535–538
  30. ^ Bravais, A. (1850). Mémoire sur les systèmes formés par des points distribués regulièrement sur un plan ou dans l’espace, J. l’Ecole Polytechnique 19, 1
  31. .
  32. ^ "Thomson effect | Thermal Conduction, Heat Transfer & Joule-Thomson | Britannica". www.britannica.com. Retrieved 2023-10-12.
  33. ^ .
  34. ^ "Who was James Clerk Maxwell?". clerkmaxwellfoundation.org. Retrieved 2023-10-12.
  35. ^ Encyclopaedia of Physics (2nd Edition), R. G. Lerner, G. L. Trigg, VHC publishers, 1991, ISBN (Verlagsgesellschaft) 3-527-26954-1, ISBN (VHC Inc.) 0-89573-752-3.
  36. .
  37. .
  38. ^ "Hall effect | Definition & Facts | Britannica". www.britannica.com. 2023-09-11. Retrieved 2023-10-12.
  39. ^ Sohncke, L. (1879). Entwickelung einer Theorie der Krystallstruktur, B.G. Teubner, Leipzig
  40. ^ "Piezoelectricity | Piezoelectricity, Acoustic Wave, Ultrasound | Britannica". www.britannica.com. 2023-09-01. Retrieved 2023-10-12.
  41. ^ "Thermionic emission | Thermionic Emission, Vacuum Tubes, Electron Flow | Britannica". www.britannica.com. Retrieved 2023-10-12.
  42. ^ "Photoelectric effect | Definition, Examples, & Applications | Britannica". www.britannica.com. 2023-10-09. Retrieved 2023-10-12.
  43. PMID 24482315
    .
  44. ^ Fedorov, E. (1891). The symmetry of regular systems of figures, Zap. Miner. Obshch. (Trans. Miner. Soc. Saint Petersburg) 28, 1-146
  45. ^ Schoenflies, A. (1891). Kristallsysteme und Kristallstruktur. B. G. Teubner
  46. ^ Dahl, Per F. (1997). Flash of the Cathode Rays: A History of J J Thomson's Electron. CRC Press. p. 10.
  47. ^ "Milestone 1 : Nature Milestones in Spin". www.nature.com. Retrieved 2018-09-09.
  48. ^ "J.J. Thomson | Biography, Nobel Prize, & Facts | Britannica". www.britannica.com. 2023-08-26. Retrieved 2023-10-12.
  49. .
  50. .
  51. ^ "The Nobel Prize in Chemistry 1953". NobelPrize.org. Retrieved 2023-10-10.
  52. S2CID 121520012
    .
  53. .
  54. ^ "Plasma - Natural, State, Matter | Britannica". www.britannica.com. Retrieved 2024-03-23.
  55. ^ Rjabinin, J. N. and Schubnikow, L.W. (1935) "Magnetic properties and critical currents of superconducting alloys", Physikalische Zeitschrift der Sowjetunion, vol. 7, no.1, pp. 122–125.
  56. S2CID 4113840
    .
  57. .
  58. .
  59. ^ Landau, L. (1941). Theory of the superfluidity of helium II. Physical Review, 60(4), 356.
  60. ISSN 0031-899X
    .
  61. ^ Casimir, H. B. G. (1948). "On the attraction between two perfectly conducting plates" (PDF). Proc. Kon. Ned. Akad. Wet. 51: 793. Archived (PDF) from the original on 2013-04-18.
  62. .
  63. ^ a b "December 1958: Invention of the Laser". www.aps.org. Retrieved 2023-09-12.
  64. .
  65. ^ Geballe, T. H.; Hulm, J. K. (1996). Bernd Theodor Matthias 1918–1990 (PDF). National Academy of Science.
  66. ISSN 0001-8732
    .
  67. .
  68. .
  69. .
  70. ^ Rostky, George. "Micromodules: the ultimate package". EE Times. Archived from the original on 2010-01-07. Retrieved 2018-04-23.
  71. ^ E. I. Rashba and V. I. Sheka, Fiz. Tverd. Tela – Collected Papers (Leningrad), v.II, 162-176 (1959) (in Russian), English translation: Supplemental Material to the paper by G. Bihlmayer, O. Rader, and R. Winkler, Focus on the Rashba effect, New J. Phys. 17, 050202 (2015), http://iopscience.iop.org/1367-2630/17/5/050202/media/njp050202_suppdata.pdf.
  72. OCLC 721888724
    .
  73. ^ W. A. Little and R. D. Parks, “Observation of Quantum Periodicity in the Transition Temperature of a Superconducting Cylinder”, Physical Review Letters 9, 9 (1962), doi:10.1103/PhysRevLett.9.9
  74. ISSN 1941-6016
    .
  75. .
  76. ^ Slyusar, V.I. (October 6–9, 2009). Metamaterials on antenna solutions (PDF). 7th International Conference on Antenna Theory and Techniques ICATT’09. Lviv, Ukraine. pp. 19–24.
  77. ^ "Soft matter physics". Institute of Physics. Retrieved October 10, 2023.
  78. S2CID 4992859
    .
  79. .
  80. .
  81. .
  82. .
  83. .
  84. ^ Linke, Heiner (2023). "Quantum dots — seeds of nanoscience" (PDF). Swedish Academy of Science.
  85. PMID 10031872
    .
  86. .
  87. .
  88. .
  89. ^ "A New Form of Matter: II, NASA-supported researchers have discovered a weird new phase of matter called fermionic condensates". Science News. Nasa Science. February 12, 2004. Archived from the original on April 2, 2019. Retrieved August 14, 2023.
  90. ^ "Graphene | Properties, Uses & Structure | Britannica". www.britannica.com. Retrieved 2023-10-12.
  91. .
  92. ^ "Scientists Discover How to Use Time Crystals to Power Superconductors | Weizmann USA". American Committee for the Weizmann Institute of Science. 2020-03-02. Retrieved 2023-10-12.
  93. ISSN 0036-8075
    .
  94. ^ "Researchers map tiny twists in "magic-angle" graphene". MIT News | Massachusetts Institute of Technology. 2020-05-08. Retrieved 2023-10-12.